Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Functionally gradient materials emulate nature's ability to seamlessly blend properties through variations in material composition, unlocking advanced engineering applications such as biomedical devices and high‐performance composites. Additive manufacturing, particularly stereolithography, enables sophisticated 3D geometries with diverse materials. However, current stereolithography‐based multi‐material 3D printing is constrained by time‐intensive material switching and compromised interfacial properties. To overcome these challenges, we present dynamic fluid‐assisted micro continuous liquid interface production (DF‐µCLIP), a high‐speed multi‐material 3D printing platform that integrates varying compositions in a fully continuous fashion. By utilizing the polymerization‐free “dead zone”, vliquid resins are seamlessly replenished within a resin bath equipped with dynamic fluidic channels and a synchronized material supply system. DF‐µCLIP achieves ultra‐fast printing speeds of 90 mm/hour with 7.4 µ m pixel‐1 resolution while enabling on‐the‐fly material transitions. This strategy enhances mechanical strength at multi‐material interface through entangled polymer networks and promotes seamless material transitions between distinct materials ilike fragile hydrogels and rigid polymers, addressing interfacial failure caused by mismatch of swelling behavior. Additionally, dynamic material replenishment with real‐time composition control enables continuous gradient printing instead of the conventional step‐wise controlled gradient. Demonstrations include polymers with gradient color transitions and gradient carbon nanotube (CNT) composites with seamlessly varying conductivity.more » « lessFree, publicly-accessible full text available April 23, 2026
-
Abstract This paper presents a scalable and straightforward technique for the immediate patterning of liquid metal/polymer composites via multiphase 3D printing. Capitalizing on the polymer's capacity to confine liquid metal (LM) into diverse patterns. The interplay between distinctive fluidic properties of liquid metal and its self‐passivating oxide layer within an oxidative environment ensures a resilient interface with the polymer matrix. This study introduces an inventive approach for achieving versatile patterns in eutectic gallium indium (EGaIn), a gallium alloy. The efficacy of pattern formation hinges on nozzle's design and internal geometry, which govern multiphase interaction. The interplay between EGaIn and polymer within the nozzle channels, regulated by variables such as traverse speed and material flow pressure, leads to periodic patterns. These patterns, when encapsulated within a dielectric polymer polyvinyl alcohol (PVA), exhibit an augmented inherent capacitance in capacitor assemblies. This discovery not only unveils the potential for cost‐effective and highly sensitive capacitive pressure sensors but also underscores prospective applications of these novel patterns in precise motion detection, including heart rate monitoring, and comprehensive analysis of gait profiles. The amalgamation of advanced materials and intricate patterning techniques presents a transformative prospect in the domains of wearable sensing and comprehensive human motion analysis.more » « less
-
Abstract Polycrystalline yttrium aluminum garnet (YAG) ceramic doped with neodymium (Nd), referred to as Nd:YAG, is widely used in solid‐state lasers. However, conventional powder metallurgy methods suffer from expenses, time consumption, and limitations in customizing structures. This study introduces a novel approach for creating Nd:YAG ceramics with 3D free‐form structures from micron (∼70 µm) to centimeter scales. Firstly, sol‐gel synthesis is employed to form photocurable colloidal solutions. Subsequently, by utilizing a home‐built micro‐continuous liquid interface printing process, precursors are printed into 3D poly(acrylic acid) hydrogels containing yttrium, aluminum, and neodymium hydroxides, with a resolution of 5.8 µmpixel−1at a speed of 10 µm s−1. After the hydrogels undergo thermal dehydration, debinding, and sintering, polycrystalline Nd:YAG ceramics featuring distinguishable grains are successfully produced. By optimizing the concentrations of the sintering aids (tetraethyl orthosilicate) and neodymium trichloride (NdCl3), the resultant samples exhibit satisfactory photoluminescence, emitting light concentrated at 1064 nm when stimulated by a 532 nm laser. Additionally, Nd:YAG ceramics with various 3D geometries (e.g., cone, spiral, and angled pillar) are printed and characterized, which demonstrates the potential for applications, such as laser and amplifier fibers, couplers, and splitters in optical circuits, as well as gain metamaterials or metasurfaces.more » « less
-
Abstract The emerging Internet of Things (IoTs) invokes increasing security demands that require robust encryption or anti‐counterfeiting technologies. Albeit being acknowledged as efficacious solutions in processing elaborate graphical information via multiple degrees of freedom, optical data encryption and anti‐counterfeiting techniques are typically inept in delivering satisfactory performance without compromising the desired ease‐of‐processibility or compatibility, thus leading to the exploration of novel materials and devices that are competent. Here, a robust optical data encryption technique is demonstrated utilizing polymer‐stabilized‐liquid‐crystals (PSLCs) combined with projection photoalignment and photopatterning methods. The PSLCs possess implicit optical patterns encoded via photoalignment, as well as explicit geometries produced via photopatterning. Furthermore, the PSLCs demonstrate improved robustness against harsh chemical environments and thermal stability and can be directly deployed onto various rigid and flexible substrates. Based on this, it is demonstrated that a single PSLC is apt to carry intricate information or serve as an exclusive watermark with both implicit features and explicit geometries. Moreover, a novel, generalized design strategy is developed, for the first time, to encode intricate and exclusive information with enhanced security by spatially programming the photoalignment patterns of a pair of cascade PSLCs, which further illustrates the promising capabilities of PSLCs in optical data encryption and anti‐counterfeiting.more » « less
An official website of the United States government
