skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Versatile Patterning of Liquid Metal via Multiphase 3D Printing
Abstract This paper presents a scalable and straightforward technique for the immediate patterning of liquid metal/polymer composites via multiphase 3D printing. Capitalizing on the polymer's capacity to confine liquid metal (LM) into diverse patterns. The interplay between distinctive fluidic properties of liquid metal and its self‐passivating oxide layer within an oxidative environment ensures a resilient interface with the polymer matrix. This study introduces an inventive approach for achieving versatile patterns in eutectic gallium indium (EGaIn), a gallium alloy. The efficacy of pattern formation hinges on nozzle's design and internal geometry, which govern multiphase interaction. The interplay between EGaIn and polymer within the nozzle channels, regulated by variables such as traverse speed and material flow pressure, leads to periodic patterns. These patterns, when encapsulated within a dielectric polymer polyvinyl alcohol (PVA), exhibit an augmented inherent capacitance in capacitor assemblies. This discovery not only unveils the potential for cost‐effective and highly sensitive capacitive pressure sensors but also underscores prospective applications of these novel patterns in precise motion detection, including heart rate monitoring, and comprehensive analysis of gait profiles. The amalgamation of advanced materials and intricate patterning techniques presents a transformative prospect in the domains of wearable sensing and comprehensive human motion analysis.  more » « less
Award ID(s):
2229279 2145895 2409815
PAR ID:
10549448
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Small
Date Published:
Journal Name:
Small
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a novel fabrication technique to create submicrometer-scale liquid metal (eutectic gallium-indium alloy, EGaIn) thin-film patterns for all-soft electronic devices. The proposed hybrid lithography process combines electron-beam lithography with soft lithography and enables high resolution and high density all-soft electronic passive components and microelectrode arrays. For the first time, submicrometer-scale EGaIn thin film patterning with feature sizes as small as 375 nm is demonstrated. Thanks to the intrinsic softness of EGaIn, the fabricated devices can endure mechanical strain >30%, while maintaining electrical functionality. 
    more » « less
  2. Abstract This review highlights the unique techniques for patterning liquid metals containing gallium (e.g., eutectic gallium indium, EGaIn). These techniques are enabled by two unique attributes of these liquids relative to solid metals: 1) The fluidity of the metal allows it to be injected, sprayed, and generally dispensed. 2) The solid native oxide shell allows the metal to adhere to surfaces and be shaped in ways that would normally be prohibited due to surface tension. The ability to shape liquid metals into non‐spherical structures such as wires, antennas, and electrodes can enable fluidic metallic conductors for stretchable electronics, soft robotics, e‐skins, and wearables. The key properties of these metals with a focus on methods to pattern liquid metals into soft or stretchable devices are summari. 
    more » « less
  3. Abstract Gallium‐based liquid metal alloys (GaLMAs) have widespread applications ranging from soft electronics, energy devices, and catalysis. GaLMAs can be transformed into liquid metal emulsions (LMEs) to modify their rheology for facile patterning, processing, and material integration for GaLMA‐based device fabrication. One drawback of using LMEs is reduced electrical conductivity owing to the oxides that form on the surface of dispersed liquid metal droplets. LMEs thus need to be activated by coalescing liquid metal droplets into an electrically conductive network, which usually involves techniques that subject the LME to harsh conditions. This study presents a way to coalesce these droplets through a chemical reaction at mild temperatures (T∼ 80 °C). Chemical activation is enabled by adding halide compounds into the emulsion that chemically etch the oxide skin on the surface of dispersed droplets of eutectic gallium indium (eGaIn). LMEs synthesized with halide activators can achieve electrical conductivities close to bulk liquid metal (2.4 × 104S cm−1) after being heated. 3D printable chemically coalescing LME ink formulations are optimized by systematically exploring halide activator type and concentration, along with mixing conditions, while maximizing for electrical conductivity, shape retention, and compatibility with direct ink writing (DIW). The utility of this ink is demonstrated in a hybrid 3D printing process to create a battery‐integrated light emitting diode array, followed by a nondestructive low temperature heat activation that produces a functional device. 
    more » « less
  4. Abstract Liquid metal embedded elastomers (LMEEs) are highly stretchable composites comprising microscopic droplets of eutectic gallium‐indium (EGaIn) liquid metal embedded in a soft rubber matrix. They have a unique combination of mechanical, electrical, and thermal properties that make them attractive for potential applications in flexible electronics, thermal management, wearable computing, and soft robotics. However, the use of LMEEs in direct contact with human tissue or organs requires an understanding of their biocompatibility and cell cytotoxicity. In this study, the cytotoxicity of C2C12 cells in contact with LMEE composites composed of EGaIn droplets embedded with a polydimethylsiloxane (PDMS) matrix is investigated. In particular, the influence of EGaIn volume ratio and shear mixing time during synthesis on cell proliferation and viability is examined. The special case of electrically‐conductive LMEE composites in which a percolating network of EGaIn droplets is created through “mechanical sintering” is also examined. This study in C2C12 cytotoxicity represents a first step in determining whether LMEE is safe for use in implantable biomedical devices and biohybrid systems. 
    more » « less
  5. Abstract Stretchable triboelectric nanogenerators (TENGs) represent a new class of energy‐harvesting devices for powering wearable devices. However, most of them are associated with poor stretchability, low stability, and limited substrate material choices. This work presents the design and demonstration of highly stretchable and stable TENGs based on liquid metalel ectrodes with different phases. The conductive and fluidic properties of eutectic gallium‐indium (EGaIn) in the serpentine microfluidic channel ensure the robust performance of the EGaIn‐based TENG upon stretching over several hundred percent. The bi‐phasic EGaIn (bGaIn) from oxidation lowers surface tension and increases adhesion for printing on diverse substrates with high output performance parameters. The optimization of the electrode shapes in the bGaIn‐based TENGs can reduce the device footprint and weight, while enhancing stretchability. The applications of the EGaIn‐ and bGaIn‐based TENG include smart elastic bands for human movement monitoring and smart carpets with integrated data transmission/processing modules for headcount monitoring/control. Combining the concept of origami in the paper‐based bGaIn TENG can reduce the device footprint to improve output performance per unit area. The integration of bGaIn‐TENG on a self‐healing polymer substrate with corrosion resistance against acidic and alkaline solutions further facilitates its use in various challenging and extreme environments. 
    more » « less