skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 22, 2026

Title: Dynamic Gradient Influencing for Viral Marketing Using Graph Neural Networks
The problem of maximizing the adoption of a product through viral marketing in social networks has been studied heavily through postulated network models. We present a novel data-driven formulation of the problem. We use Graph Neural Networks (GNNs) to model the adoption of products by utilizing both topological and attribute information. The resulting Dynamic Viral Marketing (DVM) problem seeks to find the minimum budget and minimal set of dynamic topological and attribute changes in order to attain a specified adoption goal. We show that DVM is NP-Hard and is related to the existing influence maximization problem. Motivated by this connection, we develop the idea of Dynamic Gradient Influencing (DGI) that uses gradient ranking to find optimal perturbations and targets low-budget and high influence non-adopters in discrete steps. We use an efficient strategy for computing node budgets and develop the “Meta-Influence” heuristic for assessing a node’s downstream influence. We evaluate DGI against multiple baselines and demonstrate gains on average of 24% on budget and 37% on AUC on real world attributed networks. Our code is publicly available at https: //github.com/saurabhsharma1993/dynamic_viral_marketing.  more » « less
Award ID(s):
2229876
PAR ID:
10594821
Author(s) / Creator(s):
;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400712746
Page Range / eLocation ID:
3982 to 3993
Format(s):
Medium: X
Location:
Sydney NSW Australia
Sponsoring Org:
National Science Foundation
More Like this
  1. Viral marketing on social networks, also known as Influence Maximization (IM), aims to select k users for the promotion of a target item by maximizing the total spread of their influence. However, most previous works on IM do not explore the dynamic user perception of promoted items in the process. In this paper, by exploiting the knowledge graph (KG) to capture dynamic user perception, we formulate the problem of Influence Maximization based on Dynamic Personal Perception (IMDPP) that considers user preferences and social influence reflecting the impact of relevant item adoptions. We prove the hardness of IMDPP and design an approximation algorithm, named Dynamic perception for seeding in target markets (Dysim), by exploring the concepts of dynamic reachability, target markets, and substantial influence to select and promote a sequence of relevant items. We evaluate the performance of Dysim in comparison with the state-of-the-art approaches using real social networks with real KGs. The experimental results show that Dysim effectively achieves at least 6 times of influence spread in large datasets over the state-of-the-art approaches. 
    more » « less
  2. Influence Maximization (IM), which seeks a small set of important nodes that spread the influence widely into the network, is a fundamental problem in social networks. It finds applications in viral marketing, epidemic control, and assessing cascading failures within complex systems. Despite the huge amount of effort, finding near-optimal solutions for IM is difficult due to its NP-completeness. In this paper, we propose the first social quantum computing approaches for IM, aiming to retrieve near-optimal solutions. We propose a two-phase algorithm that 1) converts IM into a Max-Cover instance and 2) provides efficient quadratic unconstrained binary optimization formulations to solve the Max-Cover instance on quantum annealers. Our experiments on the state-of-the-art D-Wave annealer indicate better solution quality compared to classical simulated annealing, suggesting the potential of applying quantum annealing to find high-quality solutions for IM. 
    more » « less
  3. Fair influence maximization in networks has been actively studied to ensure equity in fields like viral marketing and public health. Existing studies often assume an offline setting, meaning that the learner identifies a set of seed nodes with known per-edge activation probabilities. In this paper, we study the problem of fair online influence maximization, i.e., without knowing the ground-truth activation probabilities. The learner in this problem aims to maximally propagate the information among demographic groups, while interactively selecting seed nodes and observing the activation feedback on the fly. We propose Fair Online Influence Maximization (FOIM) framework that can solve the online influence maximization problem under a wide range of fairness notions. Given a fairness notion, FOIM solves the problem with a combinatorial multi-armed bandit algorithm for balancing exploration-exploitation and an offline fair influence maximization oracle for seed nodes selection. FOIM enjoys sublinear regret when the fairness notion satisfies two mild conditions, i.e., monotonicity and bounded smoothness. Our analyses show that common fairness notions, including maximin fairness, diversity fairness, and welfare function, all satisfy the condition, and we prove the corresponding regret upper bounds under these notions. Extensive empirical evaluations on three real-world networks demonstrate the efficacy of our proposed framework. 
    more » « less
  4. Decision-making on networks can be explained by both homophily and social influences. While homophily drives the formation of communities with similar characteristics, social influences occur both within and between communities. Social influences can be reasoned through role theory, which indicates that the influences among individuals depending on their roles and the behavior of interest. To operationalize these social science theories, we empirically identify the homophilous communities and use the community structures to capture such “roles”, affecting particular decision-making processes. We propose a generative model named the Stochastic Block influences Model and jointly analyzed both network formation and behavioral influences within and between different empirically-identified communities. To evaluate the performance and demonstrate the interpretability of our method, we study the adoption decisions for a microfinance product in Indian villages. We show that although individuals tend to form links within communities, there are strongly positive and negative social influences between communities, supporting the weak ties theory. Moreover, communities with shared characteristics are associated with positive influences. In contrast, communities that do not overlap are associated with negative influences. Our framework facilitates the quantification of the influences underlying decision communities and is thus a helpful tool for driving information diffusion, viral marketing, and technology adoption. 
    more » « less
  5. Effectively predicting the size of an information cascade is critical for many applications spanning from identifying viral marketing and fake news to precise recommendation and online advertising. Traditional approaches either heavily depend on underlying diffusion models and are not optimized for popularity prediction, or use complicated hand-crafted features that cannot be easily generalized to different types of cascades. Recent generative approaches allow for understanding the spreading mechanisms, but with unsatisfactory prediction accuracy. To capture both the underlying structures governing the spread of information and inherent dependencies between re-tweeting behaviors of users, we propose a semi-supervised method, called Recurrent Cascades Convolutional Networks (CasCN), which explicitly models and predicts cascades through learning the latent representation of both structural and temporal information, without involving any other features. In contrast to the existing single, undirected and stationary Graph Convolutional Networks (GCNs), CasCN is a novel multi-directional/dynamic GCN. Our experiments conducted on real-world datasets show that CasCN significantly improves the prediction accuracy and reduces the computational cost compared to state-of-the-art approaches. 
    more » « less