Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Environmentally-powered computer systems operate on renewable energy harvested from their environment, such as solar or wind, and stored in batteries. While harvesting environmental energy has long been necessary for small-scale embedded systems without access to external power sources, it is also increasingly important in designing sustainable larger-scale systems for edge applications. For sustained operations, such systems must consider not only the electrical energy but also the thermal energy available in the environment in their design and operation. Unfortunately, prior work generally ignores the impact of thermal effects, and instead implicitly assumes ideal temperatures. To address the problem, we develop a thermodynamic model that captures the interplay of elec- trical and thermal energy in environmentally-powered computer systems. The model captures the effect of environmental condi- tions, the system’s physical properties, and workload scheduling on performance. In evaluating our model, we distill the thermal effects that impact these systems using a small-scale prototype and a programmable incubator. We then leverage our model to show how considering these thermal effects in designing and operating environmentally-powered computer systems of varying scales can improve their energy-efficiency, performance, and availability.more » « less
-
There is a lack of datasets for visual-inertial odometry applications in Extended Reality (XR). To the best of our knowledge, there is no dataset available that is captured from an XR headset with a human as a carrier. To bridge this gap, we present a novel pose estimation dataset --- called HoloSet --- collected using Microsoft Hololens 2, which is a state-of-the-art head mounted device for XR. Potential applications for HoloSet include visual-inertial odometry, simultaneous localization and mapping (SLAM), and additional applications in XR that leverage visual-inertial data. HoloSet captures both macro and micro movements. For macro movements, the dataset consists of more than 66,000 samples of visual, inertial, and depth camera data in a variety of environments (indoor, outdoor) and scene setups (trails, suburbs, downtown) under multiple user action scenarios (walk, jog). For micro movements, the dataset consists of more than 12,000 samples of additional articulated hand depth camera images while a user plays games that exercise fine motor skills and hand-eye coordination. We present basic visualizations and high-level statistics of the data and outline the potential research use cases for HoloSet.more » « less
An official website of the United States government
