skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2230352

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Iron rhodium (FeRh) undergoes a first‐order anti‐ferromagnetic to ferromagnetic phase transition above its Curie temperature. By measuring the anomalous Nernst effect (ANE) in (110)‐oriented FeRh films on Al2O3substrates, the ANE thermopower over a temperature range of 100–350 K is observed, with similar magnetic transport behaviors observed for in‐plane magnetization (IM) and out‐of‐plane magnetization (PM) configurations. The temperature‐dependent magnetization–magnetic field strength (M–H) curves revealed that the ANE voltage is proportional to the magnetization of the material, but additional features magnetic textures not shown in the M‐H curves remained intractable. In particular, a sign reversal occurred for the ANE thermopower signal near zero field in the mixed‐magnetic‐phase films at low temperatures, which is attributed to the diamagnetic properties of the Al2O3substrate. Finite element method simulations associated with the Heisenberg spin model and Landau–Lifshitz–Gilbert equation strongly supported the abnormal heat transport behavior from the Al2O3substrate during the experimentally observed magnetic phase transition for the IM and PM configurations. The results demonstrate that FeRh films on an Al2O3substrate exhibit unusual behavior compared to other ferromagnetic materials, indicating their potential for use in novel applications associated with practical spintronics device design, neuromorphic computing, and magnetic memory. 
    more » « less
  2. The first investigation on the properties of intermetallic YbZn11for active cooling: an unconventional thermoelectric application. 
    more » « less
  3. Solid-state thermomagnetic modules operating based on the Nernst–Ettingshausen effects are an alternative to conventional solid-state thermoelectric modules. These modules are appropriate for low-temperature applications where the thermoelectric modules are not efficient. Here, we briefly discuss the application, performance, similarities, and differences of thermoelectric and thermomagnetic materials and modules. We review thermomagnetic module design, Nernst coefficient measurement techniques, and theoretical advances, emphasizing the Nernst effect and factors influencing its response in semimetals such as carrier compensation, Fermi surface, mobility, phonon drag, and Berry curvature. The main objective is to summarize the materials design criteria to achieve high thermomagnetic performance to accelerate thermomagnetic materials discovery. 
    more » « less
  4. GeTe-based alloys hold great promise for thermoelectric applications. Our comprehensive study investigates the intricate interplay between chemical bonding and transport properties in cubic GeTe. We demonstrate a balance between minimizing thermal conductivity and maximizing power factor, guided by the mediating influence of chemical bonding. Our primary findings reveal that Pb-doped GeTe exhibits low lattice thermal conductivity due to weak p–p orbital interactions, whereas In-doping boosts lattice thermal conductivity by reinforcing the chemical bonds, as elucidated by crystal orbital hamilton population (COHP) analysis. Further investigation reveals weak s–p interactions in Bi-, Sb-, and Pb-doped GeTe, and strong s–p interactions in In-doped GeTe compared to the pure GeTe, as probed by projected density of state (PDOS). These dual effects explain the experimentally observed high power factor and enhanced zT in Bi-, Sb-, and Pb- doping in contrast to In-doping. In our study, we find that weak s–p interactions improves electronic performance by modifying DOS whereas weak p–p interactions reduce thermal transport by diminishing the strength of chemical bonding. These findings underscore the correlation between doping-induced modifications in chemical bonding and resulting thermoelectric properties. Utilizing a first-principles framework, we systematically explore the temperature and carrier concentration-dependent transport properties of pure GeTe under relaxation time approximation. Optimization strategies yield a maximum peak power factor times temperature of 2.2 Wm−1 K−1 and a maximum zT value of ∼0.83 at 800 K, showcasing the potential for tailored thermoelectric performance. Finally, this research presents a systematic approach to improve thermoelectric performance by modifying chemical bonds through doping. 
    more » « less
  5. Two-dimensional layered transition metal dichalcogenides are potential thermoelectric candidates with application in on-chip integrated nanoscale cooling and power generation. Here, we report a comprehensive experimental and theoretical study on the in-plane thermoelectric transport properties of thin 2H-MoTe2 flakes prepared in field-effect transistor geometry to enable electrostatic gating and modulation of the electronic properties. The thermoelectric power factor is enhanced by up to 45% using electrostatic modulation. The in-plane thermal conductivity of 9.8 ± 3.7 W m−1 K−1 is measured using the heat diffusion imaging method in a 25 nm thick flake. First-principles calculations are used to obtain the electronic band structure, phonon band dispersion, and electron–phonon scattering rates. The experimental electronic properties are in agreement with theoretical results obtained within energy-dependent relaxation time approximation. The thermal conductivity is evaluated using both the relaxation time approximation and the full iterative solution to the phonon Boltzmann transport equation. This study establishes a framework to quantitively compare first-principle-based calculations with experiments in 2D layered materials. 
    more » « less