skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2231519

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Vehicular edge computing relies on the computational capabilities of interconnected edge devices to manage incoming requests from vehicles. This offloading process enhances the speed and efficiency of data handling, ultimately boosting the safety, performance, and reliability of connected vehicles. While previous studies have concentrated on processor characteristics, they often overlook the significance of the connecting components. Limited memory and storage resources on edge devices pose challenges, particularly in the context of deep learning, where these limitations can significantly affect performance. The impact of memory contention has not been thoroughly explored, especially regarding perception-based tasks. In our analysis, we identified three distinct behaviors of memory contention, each interacting differently with other resources. Additionally, our investigation of Deep Neural Network (DNN) layers revealed that certain convolutional layers experienced computation time increases exceeding 2849%, while activation layers showed a rise of 1173.34%. Through our characterization efforts, we can model workload behavior on edge devices according to their configuration and the demands of the tasks. This allows us to quantify the effects of memory contention. To our knowledge, this study is the first to characterize the influence of memory on vehicular edge computational workloads, with a strong emphasis on memory dynamics and DNN layers. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Indoor location services often use Bluetooth low energy (BLE) devices for their low energy consumption and easy implementation. Applications like device monitoring, ranging, and asset tracking utilize the received signal strength (RSS) of the BLE signal to estimate the proximity of a device from the receiver. However, in multipath environments, RSS-based solutions may not provide an accurate estimation. In such environments, receivers with antenna arrays are used to calculate the difference in time of flight (ToF) and therefore calculate the direction of arrival (DoA) of the Bluetooth signal. Other techniques like triangulation have also been used, such as having multiple transmitters or receivers as a network of sensors. To find a lost item, devices like Tile© use an onboard beeper to notify users of their presence. In this paper, we present a system that uses a single-measurement device and describe the method of measurement to estimate the location of a BLE device using RSS. A BLE device is configured as an Eddystone beacon for periodic transmission of advertising packets with RSS information. We developed a smartphone application to read RSS information from the beacon, designed an algorithm to estimate the DoA, and used the phone’s internal sensors to evaluate the DoA with respect to true north. The proposed measurement method allows for asset tracking by iterative measurements that provide the direction of the beacon and take the user closer at every step. The receiver application is easily deployable on a smartphone, and the algorithm provides direction of the beacon within a 30° range, as suggested by the provided results. 
    more » « less
  3. In this paper we present Sniffer Faster R-CNN++, an efficient Camera-LiDAR late fusion network for low complexity and accurate object detection in autonomous driving scenarios. The proposed detection network architecture operates on output candidates of any 3D detector and proposals from regional proposal network of any 2D detector to generate final prediction results. In comparison to the single modality object detection approaches, fusion based methods in many instances suffer from dissimilar data integration difficulties. On one hand, fusion based network models are complicated in nature and on the other hand they require large computational overhead and resources, processing pipelines for training and inference specially, the early fusion and deep fusion approaches. As such, we devise a late fusion network that in-cooperates pre-trained, single-modality detectors without change, performing association only at the detection level. In addition to this, lidar based method fail to detect distant object due to its sparse nature so we devise proposal refinement algorithm to jointly optimize detection candidates and assist detection for distant objects. Extensive experiments on both the 3D and 2D detection benchmark of challenging KITTI dataset illustrate that our proposed network architecture significantly improves the detection accuracy, accelerating the detection speed. 
    more » « less