skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2232441

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Internal waves impinging on sloping topography can generate mixing through the formation of near-bottom bores and overturns in what has been called the “internal swash” zone. Here, we investigate the mixing generated during these breaking events and the subsequent ventilation of the bottom boundary layer across a realistic nondimensional parameter space for the ocean using three-dimensional large-eddy simulations. Waves overturn and break at two points during a wave period: when the downslope velocity is strongest and during the rapid onset of a dense, upslope bore. From the first overturning bore to the expulsion of fluid into the interior, there is a strong dependence on the effective wave height, a length scale defined by the ratio of wave velocity over the background buoyancy frequency, an upper bound on the vertical parcel displacement an internal wave can cause. While a similar energetically motivated vertical length scale is often seen in the context of lee-wave generation over topography, the results discussed here suggest this readily measurable parameter can be used to estimate the size of near-boundary overturns, the strength of the ensuing turbulent mixing, and the vertical scale of the along-isopycnal intrusions of fluid ejected from the boundary layer. Examining a volume budget of the near-boundary region highlights spatial and temporal variability that must be considered when determining the water mass transformation during this process. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026