skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2234973

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The tools and techniques such as imaging and machine learning used in the measurement of many material and microstructural properties are rapidly evolving. In metals, the grain size is routinely measured to estimate the yield strength. This paper describes some of the algorithms used in processing the microstructures to conduct quantitative measurements. The image processing methods provide the possibility to go beyond calculating the ASTM grain size number and calculate the actual surface area of each grain, grain boundary length, and the shape of the grains. The image analysis methods can be very helpful in conducting detailed quantitative analysis with greater accuracy than many labour-intensive manual methods currently in use. The work describes the complexities in applying the imaging methods and approaches in the metallurgical and materials fields. Successful application of such methods can reduce the time and effort required to characterise microstructures and can provide more precise information. 
    more » « less
  2. Additive manufacturing (AM) methods have become mainstream in many industry sectors, especially aeronautics and space structures, where production volume for components is low and designs are highly customized. The frequency of launching space missions is increasing around the world. Some of these missions are sending landers and rovers to moon, mars, and other planets. Such space structures require numerous parts that are unique in design or are produced in just one or a very small production run. Such parts produced for high stake and very expensive missions require complete confidence in the quality of each part. Characterization of parts manufactured by AM is a significant challenge for many existing methods due to the geometric complexity, feature size in the structure, and size of the part. This paper discusses various challenges in applying current characterization methods to the AM sector. Machine learning (ML) methods are considered promising in materials and manufacturing fields. However, generating the training dataset by creating a large number of parts is expensive and impractical. New methods are required to train the ML algorithms on small datasets, especially for parts of unique geometry that are produced in limited production run such as space structures. 
    more » « less