skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2237063

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Conjugated polymers (CPs), characterized by rigid conjugation backbones and flexible peripheral side chains, hold significant promise in various organic optoelectronic applications. In this study, we employ coarse‐grained molecular dynamics (CG‐MD) simulations to investigate the intricate interplay of solvent quality, temperature, and chain architecture (e.g., side‐chain length and molecular mass) on the conformational behaviors of CPs in dilute solutions. Our research uncovers distinctive conformational behaviors under varying solvent conditions, highlighting the versatile nature of polymer chains, which can adopt extended configurations in good solvents and transition to aggregated states in poor solvents. Additionally, the mass scaling exponent , a robust structural descriptor, consistently described CPs behavior across diverse architectures and solvent conditions. Furthermore, our study shows that a CP with longer side‐chain exhibits improved solubility, which is further confirmed by experimental observations. Moreover, our analysis of the shape descriptor provided valuable insights into the symmetry and dimensionality of CPs under varying solvent conditions. These findings offer a comprehensive understanding of conformational behaviors of CPs in dilute solution, which are helpful in guiding the conformational design of polymer for specific applications. 
    more » « less
  2. Coarse-grained MD simulations reveal that the crumpling behavior of graphene nanoribbons depends strongly on width and aspect ratio, leading to distinct deformation modes, structural ordering, and mechanical responses. 
    more » « less
    Free, publicly-accessible full text available June 26, 2026
  3. Free, publicly-accessible full text available November 22, 2025
  4. A modeling-driven materials-by-design framework is provided to explore the multifunctional performance of conjugated polymers (CPs), offering new insights for the design and development of advanced CP-based materials and devices. 
    more » « less
  5. This research introduces a novel method for evaluating the structural features of biomolecules, utilizing our innovative Elliptical Dichroism (ED) spectrometer specifically designed for stereochemical analysis. By integrating ED spectrometry with autocorrelation (AC) analysis, we investigate the conformational characteristics of biological molecules such as amino acids, proteins, and extracellular vesicles (EVs) induced by elliptically polarized UV absorption. Our streamlined approach offers a cost-effective and portable solution with minimal sample consumption and supports multiple working modes to efficiently characterize biomolecular structures. The insight from this new approach demonstrates potential applications in using biomolecular characterization for cancer detection. 
    more » « less
  6. The solubilization of conjugated polymers can be carefully quantified using static light scattering. Our findings reveal that the architecture of sidechains and backbones significantly influences polymer's conformation and aggregation. 
    more » « less