Abstract Artificial intelligence (AI) is rapidly emerging as a enabling tool for solving complex materials design problems. This paper aims to review recent advances in AI‐driven materials‐by‐design and their applications to energetic materials (EM). Trained with data from numerical simulations and/or physical experiments, AI models can assimilate trends and patterns within the design parameter space, identify optimal material designs (micro‐morphologies, combinations of materials in composites, etc.), and point to designs with superior/targeted property and performance metrics. We review approaches focusing on such capabilities with respect to the three main stages of materials‐by‐design, namely representation learning of microstructure morphology (i. e., shape descriptors), structure‐property‐performance (S−P−P) linkage estimation, and optimization/design exploration. We leave out “process” as much work remains to be done to establish the connectivity between process and structure. We provide a perspective view of these methods in terms of their potential, practicality, and efficacy towards the realization of materials‐by‐design. Specifically, methods in the literature are evaluated in terms of their capacity to learn from a small/limited number of data, computational complexity, generalizability/scalability to other material species and operating conditions, interpretability of the model predictions, and the burden of supervision/data annotation. Finally, we suggest a few promising future research directions for EM materials‐by‐design, such as meta‐learning, active learning, Bayesian learning, and semi‐/weakly‐supervised learning, to bridge the gap between machine learning research and EM research.
more »
« less
Modeling-driven materials by design for conjugated polymers: insights into optoelectronic, conformational, and thermomechanical properties
A modeling-driven materials-by-design framework is provided to explore the multifunctional performance of conjugated polymers (CPs), offering new insights for the design and development of advanced CP-based materials and devices.
more »
« less
- PAR ID:
- 10556656
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Chemical Communications
- Volume:
- 60
- Issue:
- 82
- ISSN:
- 1359-7345
- Page Range / eLocation ID:
- 11625 to 11641
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Direct design of complex functional materials would revolutionize technologies ranging from printable organs to novel clean energy devices. However, even incremental steps toward designing functional materials have proven challenging. If the material is constructed from highly complex components, the design space of materials properties rapidly becomes too computationally expensive to search. On the other hand, very simple components such as uniform spherical particles are not powerful enough to capture rich functional behavior. Here, we introduce a differentiable materials design model with components that are simple enough to design yet powerful enough to capture complex materials properties: rigid bodies composed of spherical particles with directional interactions (patchy particles). We showcase the method with self-assembly designs ranging from open lattices to self-limiting clusters, all of which are notoriously challenging design goals to achieve using purely isotropic particles. By directly optimizing over the location and interaction of the patches on patchy particles using gradient descent, we dramatically reduce the computation time for finding the optimal building blocks.more » « less
-
Abstract Machine learning-augmented materials design is an emerging method for rapidly developing new materials. It is especially useful for designing new nanoarchitectured materials, whose design parameter space is often large and complex. Metal-agent dealloying, a materials design method for fabricating nanoporous or nanocomposite from a wide range of elements, has attracted significant interest. Here, a machine learning approach is introduced to explore metal-agent dealloying, leading to the prediction of 132 plausible ternary dealloying systems. A machine learning-augmented framework is tested, including predicting dealloying systems and characterizing combinatorial thin films via automated and autonomous machine learning-driven synchrotron techniques. This work demonstrates the potential to utilize machine learning-augmented methods for creating nanoarchitectured thin films.more » « less
-
Abstract Contemporary materials science has seen an increasing application of various artificial intelligence techniques in an attempt to accelerate the materials discovery process using forward modeling for predictive analysis and inverse modeling for optimization and design. Over the last decade or so, the increasing availability of computational power and large materials datasets has led to a continuous evolution in the complexity of the techniques used to advance the frontier. In this Review, we provide a high-level overview of the evolution of artificial intelligence in contemporary materials science for the task of materials property prediction in forward modeling. Each stage of evolution is accompanied by an outline of some of the commonly used methodologies and applications. We conclude the work by providing potential future ideas for further development of artificial intelligence in materials science to facilitate the discovery, design, and deployment workflow. Graphical abstractmore » « less
-
Machine learning-based inverse materials discovery has attracted enormous attention recently due to its flexibility in dealing with black box models. Yet, many metaheuristic algorithms are not as widely applied to materials discovery applications as machine learning methods. There are ongoing challenges in applying different optimization algorithms to discover materials with single- or multi-elemental compositions and how these algorithms differ in mining the ideal materials. We comprehensively compare 11 different optimization algorithms for the design of single- and multi-elemental crystals with targeted properties. By maximizing the bulk modulus and minimizing the Fermi energy through perturbing the parameterized elemental composition representations, we estimated the unique counts of elemental compositions, mean density scan of the objectives space, mean objectives, and frequency distributed over the materials’ representations and objectives. We found that nature-inspired algorithms contain more uncertainties in the defined elemental composition design tasks, which correspond to their dependency on multiple hyperparameters. Runge–Kutta optimization (RUN) exhibits higher mean objectives, whereas Bayesian optimization (BO) displayed low mean objectives compared with other methods. Combined with materials count and density scan, we propose that BO strives to approximate a more accurate surrogate of the design space by sampling more elemental compositions and hence have lower mean objectives, yet RUN will repeatedly sample the targeted elemental compositions with higher objective values. Our work sheds light on the automated digital design of materials with single- and multi-elemental compositions and is expected to elicit future studies on materials optimization, such as composite and alloy design based on specific desired properties.more » « less
An official website of the United States government

