skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2237348

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper demonstratesPynapple-G, an open-source library for scalable spatial grouping queries based on Apache Sedona (formerly known as GeoSpark). We demonstrate two modules, namely,SGPACandDDCEL, that support grouping points, grouping lines, and polygon overlays. TheSGPACmodule provides a large-scale grouping of spatial points by highly complex polygon boundaries. The grouping results aggregate the number of spatial points within the boundaries of each polygon. TheDDCELmodule provides the first parallelized algorithm to group spatial lines into a DCEL data structure and discovers planar polygons from scattered line segments. Exploiting the scalable DCEL, we support scalable overlay operations over multiple polygon layers to compute the layers' intersection, union, or difference. To showcasePyneapple-G, we have developed a frontend web application that enables users to interact with these modules, select their data layers or data points, and view results on an interactive map. We also provide interactive notebooks demonstrating the superiority and simplicity ofPyneapple-Gto help social scientists and developers explore its full potential. 
    more » « less
  2. Mobility data captures the locations of moving objects such as humans, animals, and cars. With the availability of Global Positioning System (GPS)–equipped mobile devices and other inexpensive location-tracking technologies, mobility data is collected ubiquitously. In recent years, the use of mobility data has demonstrated a significant impact in various domains, including traffic management, urban planning, and health sciences. In this article, we present the domain of mobility data science. Towards a unified approach to mobility data science, we present a pipeline having the following components: mobility data collection, cleaning, analysis, management, and privacy. For each of these components, we explain how mobility data science differs from general data science, we survey the current state-of-the-art, and describe open challenges for the research community in the coming years. 
    more » « less
  3. Social media platforms generate massive amounts of data that reveal valuable insights about users and communities at large. Existing techniques have not fully exploited such data to help practitioners perform a deep analysis of large online communities. Lack of scalability hinders analyzing communities of large sizes and requires tremendous system resources and unacceptable runtime. This article proposes a new analytical query that identifies the top-kposts that a given user community has interacted with during a specific time interval and within a spatial range. We propose a novel indexing framework that captures the interactions of users and communities to provide a low query latency. Moreover, we propose exact and approximate algorithms to process the query efficiently and utilize the index content to prune the search space. The extensive experimental evaluation on real data has shown the superiority of our techniques and their scalability to support large online communities. 
    more » « less
  4. The widespread of geotagged data combined with modern map services allows for the accurate attachment of data to spatial networks. Applying statistical analysis, such as hotspot detection, over spatial networks is very important for precise quantification and patterns analysis, which empowers effective decision-making in various important applications. Existing hotspot detection algorithms on spatial networks either lack statistical evidence on detected hotspots, such as clustering, or they provide statistical evidence at a prohibitive computational overhead. In this paper, we propose efficient algorithms for detecting hotspots based on the network local K-function for predefined and unknown hotspot radii. The network local K-function is a widely adopted statistical approach for network pattern analysis that enables the understanding of the density and distribution of activities and events in the spatial network. However, its practical application has been limited due to the inefficiency of existing algorithms, particularly for large-sized networks. Extensive experimental evaluation using real and synthetic datasets shows that our algorithms are up to 28 times faster than the state-of-the-art algorithms in computing hotspots with a predefined radius and up to more than four orders of magnitude faster in identifying hotspots without a predefined radius. 
    more » « less
  5. The process of regionalization involves clustering a set of spatial areas into spatially contiguous regions. Given the NP-hard nature of regionalization problems, all existing algorithms yield approximate solutions. To ascertain the quality of these approximations, it is crucial for domain experts to obtain statistically significant evidence on optimizing the objective function, in comparison to a random reference distribution derived from all potential sample solutions. In this paper, we propose a novel spatial regionalization problem, denoted as SISR (Statistical Inference for Spatial Regionalization), which generates random sample solutions with a predetermined region cardinality. The driving motivation behind SISR is to conduct statistical inference on any given regionalization scheme. To address SISR, we present a parallel technique named PRRP (P-Regionalization through Recursive Partitioning). PRRP operates over three phases: the region-growing phase constructs initial regions with a predetermined region cardinality, while the region merging and region-splitting phases ensure the spatial contiguity of unassigned areas, allowing for the growth of subsequent regions with predetermined cardinalities. An extensive evaluation shows the effectiveness of PRRP using various real datasets. 
    more » « less
  6. This paper studies the spatial group-by query over complex polygons. Given a set of spatial points and a set of polygons, the spatial group-by query returns the number of points that lie within the boundaries of each polygon. Groups are selected from a set of non-overlapping complex polygons, typically in the order of thousands, while the input is a large-scale dataset that contains hundreds of millions or even billions of spatial points. This problem is challenging because real polygons (like counties, cities, postal codes, voting regions, etc.) are described by very complex boundaries. We propose a highly-parallelized query processing framework to efficiently compute the spatial group-by query on highly skewed spatial data. We also propose an effective query optimizer that adaptively assigns the appropriate processing scheme based on the query polygons. Our experimental evaluation with real data and queries has shown significant superiority over all existing techniques. 
    more » « less
  7. Regionalization techniques group spatial areas into a set of homogeneous regions to analyze and draw conclusions about spatial phenomena. A recent regionalization problem, called MP-regions, groups spatial areas to produce a maximum number of regions by enforcing a user-defined constraint at the regional level. The MP-regions problem is NP-hard. Existing approximate algorithms for MP-regions do not scale for large datasets due to their high computational cost and inherently centralized approaches to process data. This article introduces a parallel scalable regionalization framework (PAGE) to support MP-regions on large datasets. The proposed framework works in two stages. The first stage finds an initial solution through randomized search, and the second stage improves this solution through efficient heuristic search. To build an initial solution efficiently, we extend traditional spatial partitioning techniques to enable parallelized region building without violating the spatial constraints. Furthermore, we optimize the region building efficiency and quality by tuning the randomized area selection to trade off runtime with region homogeneity. The experimental evaluation shows the superiority of our framework to support an order of magnitude larger datasets efficiently compared to the state-of-the-art techniques while producing high-quality solutions. 
    more » « less