Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Switchbacks, defined as Alfvénic reversals in magnetic field polarity, can dissipate their magnetic energy with heliocentric distance. To further investigate this, two distinct solar wind parcels tracing back to a similar solar source region were examined during a radial alignment between Parker Solar Probe (@25.8RS) and Solar Orbiter (@152RS). The one caveat was that the two probes were located on opposite sides of the heliospheric current sheet during the alignment. The two parcels contained a multitude of switchbacks—the parcel closer to the Sun was characterized as a switchback patch (SBP), where background proton velocity (vp) is comparable to the pristine solar wind (vsw), while the parcel farther from the Sun showed characteristics attributable to a microstream (MS;vp > vsw). It was found that (1) MS contains, on average, 30% fewer switchbacks than SBP, and (2) dynamic and thermal pressures decreased by up to 20% across switchback boundaries in SBP and relatively unchanged in MS. Magnetic relaxation can explain the lower number of switchbacks in MS compared to SBP. Switchback relaxation inside SBP can, in turn, accelerate plasma inside SBP over time and heliocentric distance, thus resulting invp>vswin MS. Therefore, it is hypothesized that magnetic relaxation of switchbacks may cause SBPs to evolve into MSs over time and heliocentric distance.more » « less
-
The approximately 11-year solar cycle has been shown to impact the heavy ion composition of the solar wind, even when accounting for streams of differing speeds; however, the heavy ion composition observed between the same specific phases of a past solar cycle and the current cycle has rarely, if ever, been compared. Here, we compare the heavy ion composition of the solar wind, as measuredin situduring the solar cycle 23 and 25 ascending phases. We examine the mean iron and oxygen charge state composition and the O7+/O6+ratio in multiple ranges of associated bulk wind speeds. Then, we compare the iron and oxygen charge state composition and relative abundance of iron to oxygen in the traditionally defined fast and slow solar wind. Finally, to determine the impact of individual ion contributions on the solar wind iron abundance, we examine individual ratios of iron and oxygen ions. Although the charge state composition remained broadly similar between these two ascending phases, both the O7+/O6+ratio and iron fractionation in fast-speed streams were higher in the solar cycle 25 ascending phase than they were during the solar cycle 23 ascending phase, suggesting that equatorial coronal hole fields more frequently reconnected with helmet streamers or active regions in the latter of the two ascending phases; however, more work will need to be done to connect these observations back to their coronal origins. The individual ion ratios used in this work provided a spectrum to analyze the aggregate elemental abundances, and this work, as a whole, is an important step in determining how conditions in the corona may vary between solar cycles between the same phases.more » « less
An official website of the United States government

Full Text Available