Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Sea‐level rise (SLR) increasingly threatens coastal communities around the world. However, not all coastal communities are equally threatened, and realistic estimation of hazard is difficult. Understanding SLR impacts on extreme sea level is challenging due to interactions between multiple tidal and non‐tidal flood drivers. We here use global hourly tidal data to show how and why tides and surges interact with mean sea level (MSL) fluctuations. At most locations around the world, the amplitude of at least one tidal constituent and/or amplitude of non‐tidal residual have changed in response to MSL variation over the past few decades. In 37% of studied locations, “Potential Maximum Storm Tide” (PMST), a proxy for extreme sea level dynamics, co‐varies with MSL variations. Over all stations, the median PMST will be 20% larger by the mid‐century, and conventional approaches that simply shift the current storm tide regime up at the rate of projected SLR may underestimate the flooding hazard at these locations by up to a factor of four. Micro‐ and meso‐tidal systems and those with diurnal tidal regime are generally more susceptible to altered MSL than other categories. The nonlinear interactions of MSL and storm tide captured in PMST statistics contribute, along with projected SLR, to the estimated increase in flood hazard at three‐fourth of studied locations by mid‐21st century. PMST is a threshold that captures nonlinear interactions between extreme sea level components and their co‐evolution over time. Thus, use of this statistic can help direct assessment and design of critical coastal infrastructure.more » « less
-
Compound floods may happen in low-lying estuarine environments when sea level above normal tide co-occurs with high river flow. Thus, comprehensive flood risk assessments for estuaries should not only account for the individual hazard arising from each environmental variable in isolation, but also for the case of bivariate hazard. Characterization of the dependence structure of the two flood drivers becomes then crucial, especially under climatic variability and change that may affect their relationship. In this article, we demonstrate our search for evidence of non-stationarity in the dependence between river discharge and storm surge along the East and Gulf coasts of the United States, driven by large-scale climate variability, particularly El-Niño Southern Oscillation and North Atlantic Oscillation (NAO). Leveraging prolonged overlapping observational records and copula theory, we recover parameters of both stationary and dynamic copulas using state-of-the-art Markov Chain Monte Carlo methods. Physics-informed copulas are developed by modeling the magnitude of dependence as a linear function of large-scale climate indices, i.e., Oceanic Niño Index or NAO index. After model comparison via suitable Bayesian metrics, we find no strong indication of such non-stationarity for most estuaries included in our analysis. However, when non-stationarity due to these climate modes cannot be neglected, this work highlights the importance of appropriately characterizing bivariate hazard under non-stationarity assumption. As an example, we find that during a strong El-Niño year, Galveston Bay, TX, is much more likely to experience a coincidence of abnormal sea level and elevated river stage.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract. Compound flooding, caused by the sequence and/or co-occurrence of flood drivers (i.e., river discharge and elevated sea level), can lead to devastating consequences for society. Weak and insufficient progress toward sustainable development and disaster risk reduction is likely to exacerbate the catastrophic impacts of these events on vulnerable communities. For this reason, it is indispensable to develop new perspectives on evaluating compound-flooding dependence and communicating the associated hazards to meet UN Sustainable Development Goals (SDGs) related to climate action, sustainable cities, and sustainable coastal communities. The first step in examining bivariate dependence is to plot the data in the variable space, i.e., visualizing a scatterplot, where each axis represents a variable of interest, and then computing a form of correlation between them. This paper introduces the Angles method, based on Euclidean geometry of the so-called “subject space”, as a complementary visualization approach specifically designed for communicating the dependence structure of compound-flooding drivers to diverse end-users. Here, we evaluate, for the first time, the utility of this geometric space in computing and visualizing the dependence structure of compound-flooding drivers. To assess the effectiveness of this method as a hazard communication tool, we conducted a survey with a diverse group of end-users, including academic and non-academic respondents. The survey results provide insights into the perceptions regarding the applicability of the Angles method and highlight its potential as an intuitive alternative to scatterplots in depicting the evolution of dependence in the non-stationary environment. This study emphasizes the importance of innovative visualization techniques in bridging the gap between scientific insights and practical applications, supporting more effective compound flood hazard communication.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Compound flooding, caused by the sequence/co-occurrence of flood drivers (i.e. river discharge and elevated sea level ) can lead to devastating consequences for society. Weak and insufficient progress toward sustainable development and disaster risk reduction are likely to exacerbate the catastrophic impacts of these events on vulnerable communities. For this reason, it is indispensable to develop new perspectives on evaluating compound flooding dependence and communicating the associated risks to meet UN Sustainable Development Goals (SDGs) related to climate action, sustainable cities, and sustainable coastal communities. An indispensable first step for studies examining the dependence between these bivariate extremes is plotting the data in the variable space, i.e., visualizing a scatterplot, where each axis represents a variable of interest, then computing a form of correlation between them. This paper introduces the Angles method, based on Euclidean geometry of the so-called “subject space,” for visualizing the dependence structure of compound flooding drivers. Here, we evaluate, for the first time, the utility of this geometric space in computing and visualizing the dependence structure of compound flooding drivers. To assess the effectiveness of this method as a risk communication tool, we conducted a survey with a diverse group of end-users, including academic and non-academic respondents. The survey results provide insights into the perceptions of applicability of the Angles method and highlight its potential as an intuitive alternative to scatterplots in depicting the evolution of dependence in the non-stationary environment. This study emphasizes the importance of innovative visualization techniques in bridging the gap between scientific insights and practical applications, supporting more effective compound flood hazard communication in a warming climate.more » « less
-
Frequency analysis of extreme storm surge is crucial for coastal flood risk assessments. To date, such analyses are based on traditional extreme value theory (EVT) and its associated generalized extreme value (GEV) distribution. The metastatistical extreme value distribution (MEVD) provides a new approach that can alleviate limitations of EVT. This paper provides a comparison between the GEV distribution and the MEVD on their ability to predict “unseen” upper-tail quantiles of storm surge along the US coastline. We analyze the error structure of these distributions by performing a cross-validation experiment where we repeatedly divide the data record into a calibration and validation set, respectively, and then compute the predictive non-dimensional error. We find that the MEVD provides comparable estimates of extreme storm surge to those of the GEV distribution, with discrepancies being subtle and dependent on tide gauge location and calibration set length. Additionally, we show that predictions from the MEVD are more robust with less variability in error. Finally, we illustrate that the employment of the MEVD, as opposed to classical EVT, can lead to remarkable differences in design storm surge height; this has serious implications for engineering applications at sites where the novel MEVD is found more appropriate.more » « less
An official website of the United States government
