skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2238257

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 16, 2026
  2. Free, publicly-accessible full text available June 23, 2026
  3. Wearable devices that have low-power sensors, processors, and communication capabilities are gaining wide adoption in several health applications. The machine learning algorithms on these devices assume that data from all sensors are available during runtime. However, data from one or more sensors may be unavailable due to energy or communication challenges. This loss of sensor data can result in accuracy degradation of the application. Prior approaches to handle missing data, such as generative models or training multiple classifiers for each combination of missing sensors are not suitable for low-energy wearable devices due to their high overhead at runtime. In contrast to prior approaches, we present an energy-efficient approach, referred to as Sensor-Aware iMputation (SAM), to accurately impute missing data at runtime and recover application accuracy. SAM first uses unsupervised clustering to obtain clusters of similar sensor data patterns. Next, it learns inter-relationship between clusters to obtain imputation patterns for each combination of clusters using a principled sensor-aware search algorithm. Using sensor data for clustering before choosing imputation patterns ensures that the imputation isawareof sensor data observations. Experiments on seven diverse wearable sensor-based time-series datasets demonstrate that SAM is able to maintain accuracy within 5% of the baseline with no missing data when one sensor is missing. We also compare SAM against generative adversarial imputation networks (GAIN), transformers, and k-nearest neighbor methods. Results show that SAM outperforms all three approaches on average by more than 25% when two sensors are missing with negligible overhead compared to the baseline. 
    more » « less
    Free, publicly-accessible full text available January 31, 2026
  4. Free, publicly-accessible full text available November 1, 2025
  5. Free, publicly-accessible full text available November 1, 2025
  6. Wearable devices are being increasingly used in high-impact health applications including vital sign monitoring, rehabilitation, and movement disorders. Wearable health monitoring can aid in the United Nations social development goal of healthy lives by enabling early warning, risk reduction, and management of health risks. Health tasks on wearable devices employ multiple sensors to collect relevant parameters of user’s health and make decisions using machine learning (ML) algorithms. The ML algorithms assume that data from all sensors are available for the health monitoring tasks. However, the applications may encounter missing or incomplete data due to user error, energy limitations, or sensor malfunction. Missing data results in significant loss of accuracy and quality of service. This paper presents a novel Classifier-Aware iMputation (CAM) approach to impute missing data such that classifier accuracy for health tasks is not affected. Specifically, CAM employs unsupervised clustering followed by a principled search algorithm to uncover imputation patterns that maintain high accuracy. Evaluations on seven diverse health tasks show that CAM achieves accuracy within 5% of the baseline with no missing data when one sensor is missing. CAM also achieves significantly higher accuracy compared to generative approaches with negligible energy overhead, making it suitable for wide range of wearable applications. 
    more » « less
  7. Human activity recognition (HAR) and, more broadly, activities of daily life recognition using wearable devices have the potential to transform a number of applications, including mobile healthcare, smart homes, and fitness monitoring. Recent approaches for HAR use multiple sensors on various locations on the body to achieve higher accuracy for complex activities. While multiple sensors increase the accuracy, they are also susceptible to reliability issues when one or more sensors are unable to provide data to the application due to sensor malfunction, user error, or energy limitations. Training multiple activity classifiers that use a subset of sensors is not desirable, since it may lead to reduced accuracy for applications. To handle these limitations, we propose a novel generative approach that recovers the missing data of sensors using data available from other sensors. The recovered data are then used to seamlessly classify activities. Experiments using three publicly available activity datasets show that with data missing from one sensor, the proposed approach achieves accuracy that is within 10% of the accuracy with no missing data. Moreover, implementation on a wearable device prototype shows that the proposed approach takes about 1.5 ms for recovering data in the w-HAR dataset, which results in an energy consumption of 606 μJ. The low-energy consumption ensures that SensorGAN is suitable for effectively recovering data in tinyML applications on energy-constrained devices. 
    more » « less
  8. Human activity recognition (HAR) is an important component in a number of health applications, including rehabilitation, Parkinson’s disease, daily activity monitoring, and fitness monitoring. State-of-the-art HAR approaches use multiple sensors on the body to accurately identify activities at runtime. These approaches typically assume that data from all sensors are available for runtime activity recognition. However, data from one or more sensors may be unavailable due to malfunction, energy constraints, or communication challenges between the sensors. Missing data can lead to significant degradation in the accuracy, thus affecting quality of service to users. A common approach for handling missing data is to train classifiers or sensor data recovery algorithms for each combination of missing sensors. However, this results in significant memory and energy overhead on resource-constrained wearable devices. In strong contrast to prior approaches, this paper presents a clustering-based approach (CIM) to impute missing data at runtime. We first define a set of possible clusters and representative data patterns for each sensor in HAR. Then, we create and store a mapping between clusters across sensors. At runtime, when data from a sensor are missing, we utilize the stored mapping table to obtain most likely cluster for the missing sensor. The representative window for the identified cluster is then used as imputation to perform activity classification. We also provide a method to obtain imputation-aware activity prediction sets to handle uncertainty in data when using imputation. Experiments on three HAR datasets show that CIM achieves accuracy within 10% of a baseline without missing data for one missing sensor when providing single activity labels. The accuracy gap drops to less than 1% with imputation-aware classification. Measurements on a low-power processor show that CIM achieves close to 100% energy savings compared to state-of-the-art generative approaches. 
    more » « less