skip to main content


This content will become publicly available on October 31, 2024

Title: CIM: A Novel Clustering-based Energy-Efficient Data Imputation Method for Human Activity Recognition

Human activity recognition (HAR) is an important component in a number of health applications, including rehabilitation, Parkinson’s disease, daily activity monitoring, and fitness monitoring. State-of-the-art HAR approaches use multiple sensors on the body to accurately identify activities at runtime. These approaches typically assume that data from all sensors are available for runtime activity recognition. However, data from one or more sensors may be unavailable due to malfunction, energy constraints, or communication challenges between the sensors. Missing data can lead to significant degradation in the accuracy, thus affecting quality of service to users. A common approach for handling missing data is to train classifiers or sensor data recovery algorithms for each combination of missing sensors. However, this results in significant memory and energy overhead on resource-constrained wearable devices. In strong contrast to prior approaches, this paper presents a clustering-based approach (CIM) to impute missing data at runtime. We first define a set of possible clusters and representative data patterns for each sensor in HAR. Then, we create and store a mapping between clusters across sensors. At runtime, when data from a sensor are missing, we utilize the stored mapping table to obtain most likely cluster for the missing sensor. The representative window for the identified cluster is then used as imputation to perform activity classification. We also provide a method to obtain imputation-aware activity prediction sets to handle uncertainty in data when using imputation. Experiments on three HAR datasets show that CIM achieves accuracy within 10% of a baseline without missing data for one missing sensor when providing single activity labels. The accuracy gap drops to less than 1% with imputation-aware classification. Measurements on a low-power processor show that CIM achieves close to 100% energy savings compared to state-of-the-art generative approaches.

 
more » « less
Award ID(s):
2238257
NSF-PAR ID:
10500183
Author(s) / Creator(s):
;
Publisher / Repository:
Association for Computing Machinery
Date Published:
Journal Name:
ACM Transactions on Embedded Computing Systems
Volume:
22
Issue:
5s
ISSN:
1539-9087
Page Range / eLocation ID:
1 to 26
Subject(s) / Keyword(s):
["Human activity recognition","wearable electronics","missing data detection","data imputation","clustering","health monitoring"]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Human activity recognition (HAR) is growing in popularity due to its wide-ranging applications in patient rehabilitation and movement disorders. HAR approaches typically start with collecting sensor data for the activities under consideration and then develop algorithms using the dataset. As such, the success of algorithms for HAR depends on the availability and quality of datasets. Most of the existing work on HAR uses data from inertial sensors on wearable devices or smartphones to design HAR algorithms. However, inertial sensors exhibit high noise that makes it difficult to segment the data and classify the activities. Furthermore, existing approaches typically do not make their data available publicly, which makes it difficult or impossible to obtain comparisons of HAR approaches. To address these issues, we present wearable HAR (w-HAR) which contains labeled data of seven activities from 22 users. Our dataset’s unique aspect is the integration of data from inertial and wearable stretch sensors, thus providing two modalities of activity information. The wearable stretch sensor data allows us to create variable-length segment data and ensure that each segment contains a single activity. We also provide a HAR framework to use w-HAR to classify the activities. To this end, we first perform a design space exploration to choose a neural network architecture for activity classification. Then, we use two online learning algorithms to adapt the classifier to users whose data are not included at design time. Experiments on the w-HAR dataset show that our framework achieves 95% accuracy while the online learning algorithms improve the accuracy by as much as 40%. 
    more » « less
  2. Human activity recognition (HAR) is the process of using mobile sensor data to determine the physical activities performed by individuals. HAR is the backbone of many mobile healthcare applications, such as passive health monitoring systems, early diagnosing systems, and fall detection systems. Effective HAR models rely on deep learning architectures and big data in order to accurately classify activities. Unfortunately, HAR datasets are expensive to collect, are often mislabeled, and have large class imbalances. State-of-the-art approaches to address these challenges utilize Generative Adversarial Networks (GANs) for generating additional synthetic data along with their labels. Problematically, these HAR GANs only synthesize continuous features — features that are represented by real numbers — recorded from gyroscopes, accelerometers, and other sensors that produce continuous data. This is limiting since mobile sensor data commonly has discrete features that provide additional context such as device location and the time-of-day, which have been shown to substantially improve HAR classification. Hence, we studied Conditional Tabular Generative Adversarial Networks (CTGANs) for data generation to synthesize mobile sensor data containing both continuous and discrete features, a task never been done by state-of-the-art approaches. We show HAR-CTGANs generate data with greater realism resulting in allowing better downstream performance in HAR models, and when state-of-the-art models were modified with HAR-CTGAN characteristics, downstream performance also improves. 
    more » « less
  3. null (Ed.)
    There is an increasing demand for performing machine learning tasks, such as human activity recognition (HAR) on emerging ultra-low-power internet of things (IoT) platforms. Recent works show substantial efficiency boosts from performing inference tasks directly on the IoT nodes rather than merely transmitting raw sensor data. However, the computation and power demands of deep neural network (DNN) based inference pose significant challenges when executed on the nodes of an energy-harvesting wireless sensor network (EH-WSN). Moreover, managing inferences requiring responses from multiple energy-harvesting nodes imposes challenges at the system level in addition to the constraints at each node. This paper presents a novel scheduling policy along with an adaptive ensemble learner to efficiently perform HAR on a distributed energy-harvesting body area network. Our proposed policy, Origin, strategically ensures efficient and accurate individual inference execution at each sensor node by using a novel activity-aware scheduling approach. It also leverages the continuous nature of human activity when coordinating and aggregating results from all the sensor nodes to improve final classification accuracy. Further, Origin proposes an adaptive ensemble learner to personalize the optimizations based on each individual user. Experimental results using two different HAR data-sets show Origin, while running on harvested energy, to be at least 2.5% more accurate than a classical battery-powered energy aware HAR classifier continuously operating at the same average power. 
    more » « less
  4. Battery-free sensing devices harvest energy from their surrounding environment to perform sensing, computation, and communication. This enables previously impossible applications in the Internet-of-Things. A core challenge for these devices is maintaining usefulness despite erratic, random or irregular energy availability; which causes inconsistent execution, loss of service and power failures. Adapting execution (degrading or upgrading) seems promising as a way to stave off power failures, meet deadlines, or increase throughput. However, because of constrained resources and limited local information, it is a challenge to decide when would be the best time to adapt, and how exactly to adapt execution. In this paper, we systematically explore the fundamental mechanisms of energy-aware adaptation, and propose heuristic adaptation as a method for modulating the performance of tasks to enable higher sensor coverage, completion rates, or throughput, depending on the application. We build a task based adaptive runtime system for intermittently powered sensors embodying this concept. We complement this runtime with a user facing simulator that enables programmers to conceptualize the tradeoffs they make when choosing what tasks to adapt, and how, relative to real world energy harvesting environment traces. While we target battery-free, intermittently powered sensors, we see general application to all energy harvesting devices. We explore heuristic adaptation with varied energy harvesting modalities and diverse applications: machine learning, activity recognition, and greenhouse monitoring, and find that the adaptive version of our ML app performs up to 46% more classifications with only a 5% drop in accuracy; the activity recognition app captures 76% more classifications with only nominal down-sampling; and find that heuristic adaptation leads to higher throughput versus non-adaptive in all cases. 
    more » « less
  5. We explore the effect of auxiliary labels in improving the classification accuracy of wearable sensor-based human activity recognition (HAR) systems, which are primarily trained with the supervision of the activity labels (e.g. running, walking, jumping). Supplemental meta-data are often available during the data collection process such as body positions of the wearable sensors, subjects' demographic information (e.g. gender, age), and the type of wearable used (e.g. smartphone, smart-watch). This information, while not directly related to the activity classification task, can nonetheless provide auxiliary supervision and has the potential to significantly improve the HAR accuracy by providing extra guidance on how to handle the introduced sample heterogeneity from the change in domains (i.e positions, persons, or sensors), especially in the presence of limited activity labels. However, integrating such meta-data information in the classification pipeline is non-trivial - (i) the complex interaction between the activity and domain label space is hard to capture with a simple multi-task and/or adversarial learning setup, (ii) meta-data and activity labels might not be simultaneously available for all collected samples. To address these issues, we propose a novel framework Conditional Domain Embeddings (CoDEm). From the available unlabeled raw samples and their domain meta-data, we first learn a set of domain embeddings using a contrastive learning methodology to handle inter-domain variability and inter-domain similarity. To classify the activities, CoDEm then learns the label embeddings in a contrastive fashion, conditioned on domain embeddings with a novel attention mechanism, enforcing the model to learn the complex domain-activity relationships. We extensively evaluate CoDEm in three benchmark datasets against a number of multi-task and adversarial learning baselines and achieve state-of-the-art performance in each avenue. 
    more » « less