skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2238359

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This study presents a data-driven framework for modeling complex systems, with a specific emphasis on traffic modeling. Traditional methods in traffic modeling often rely on assumptions regarding vehicle interactions. Our approach comprises two steps: first, utilizing information- theoretic (IT) tools to identify interaction directions and candidate variables thus eliminating assumptions, and second, employing the sparse identification of nonlinear systems (SINDy) tool to establish functional relationships. We validate the framework’s efficacy using synthetic data from two distinct traffic models, while considering measurement noise. Results show that IT tools can reliably detect directions of interaction as well as instances of no interaction. SINDy proves instrumental in creating precise functional relationships and determining coefficients in tested models. The innovation of our framework lies in its ability to use data-driven approach to model traffic dynamics without relying on assumptions, thus offering applications in various complex systems beyond traffic. 
    more » « less
  2. Free, publicly-accessible full text available February 4, 2026
  3. Free, publicly-accessible full text available January 23, 2026