Modeling the non-linear dynamics of a system from measurement data accurately is an open challenge. Over the past few years, various tools such as SINDy and DySMHO have emerged as approaches to distill dynamics from data. However, challenges persist in accurately capturing dynamics of a system especially when the physical knowledge about the system is unknown. A promising solution is to use a hybrid paradigm, that combines mechanistic and black-box models to leverage their respective strengths. In this study, we combine a hybrid modeling paradigm with sparse regression, to develop and identify models simultaneously. Two methods are explored, considering varying complexities, data quality, and availability and by comparing different case studies. In the first approach, we integrate SINDy-discovered models with neural ODE structures, to model unknown physics. In the second approach, we employ Multifidelity Surrogate Models (MFSMs) to construct composite models comprised of SINDy-discovered models and error-correction models. 
                        more » 
                        « less   
                    
                            
                            Validating a data-driven framework for vehicular traffic modeling
                        
                    
    
            Abstract This study presents a data-driven framework for modeling complex systems, with a specific emphasis on traffic modeling. Traditional methods in traffic modeling often rely on assumptions regarding vehicle interactions. Our approach comprises two steps: first, utilizing information- theoretic (IT) tools to identify interaction directions and candidate variables thus eliminating assumptions, and second, employing the sparse identification of nonlinear systems (SINDy) tool to establish functional relationships. We validate the framework’s efficacy using synthetic data from two distinct traffic models, while considering measurement noise. Results show that IT tools can reliably detect directions of interaction as well as instances of no interaction. SINDy proves instrumental in creating precise functional relationships and determining coefficients in tested models. The innovation of our framework lies in its ability to use data-driven approach to model traffic dynamics without relying on assumptions, thus offering applications in various complex systems beyond traffic. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2238359
- PAR ID:
- 10504671
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Journal of Physics: Complexity
- Volume:
- 5
- Issue:
- 2
- ISSN:
- 2632-072X
- Format(s):
- Medium: X Size: Article No. 025008
- Size(s):
- Article No. 025008
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Over the past few decades, several data‐driven methods have been developed for identifying a model that accurately describes the process dynamics. Lately, sparse identification of nonlinear dynamics (SINDy) has delivered promising results for various nonlinear processes. However, at any instance of plant‐model mismatch or process upset, retraining the model using SINDy is computationally expensive and cannot guarantee to catch up with rapidly changing dynamics. Hence, we propose operable adaptive sparse identification of systems (OASIS) framework that extends the capabilities of SINDy for accurate, automatic, and adaptive approximation of process models. First, we use SINDy to obtain multiple models from historical data for varying input settings. Next, using these models and their training data, we build a deep neural network that is incorporated in a model predictive control framework for closed‐loop operation. We demonstrate the OASIS methodology on the identification and control of a continuous stirred tank reactor.more » « less
- 
            Alber, Mark (Ed.)Biological systems exhibit complex dynamics that differential equations can often adeptly represent. Ordinary differential equation models are widespread; until recently their construction has required extensive prior knowledge of the system. Machine learning methods offer alternative means of model construction: differential equation models can be learnt from data via model discovery using sparse identification of nonlinear dynamics (SINDy). However, SINDy struggles with realistic levels of biological noise and is limited in its ability to incorporate prior knowledge of the system. We propose a data-driven framework for model discovery and model selection using hybrid dynamical systems: partial models containing missing terms. Neural networks are used to approximate the unknown dynamics of a system, enabling the denoising of the data while simultaneously learning the latent dynamics. Simulations from the fitted neural network are then used to infer models using sparse regression. We show, via model selection, that model discovery using hybrid dynamical systems outperforms alternative approaches. We find it possible to infer models correctly up to high levels of biological noise of different types. We demonstrate the potential to learn models from sparse, noisy data in application to a canonical cell state transition using data derived from single-cell transcriptomics. Overall, this approach provides a practical framework for model discovery in biology in cases where data are noisy and sparse, of particular utility when the underlying biological mechanisms are partially but incompletely known.more » « less
- 
            Abstract In engineering design, global sensitivity analysis (GSA) is used for analyzing the effects of inputs on the system response and is commonly studied with analytical or surrogate models. However, such models fail to capture nonlinear behaviors in complex systems and involve several modeling assumptions. Besides model-focused methods, a data-driven GSA approach, rooted in interpretable machine learning, would also identify the relationships between system components. Moreover, a special need in engineering design extends beyond performing GSA for input variables individually, but instead evaluating the contributions of variable groups on the system response. In this article, we introduce a flexible, interpretable artificial neural network model to uncover individual as well as grouped global sensitivity indices for understanding complex physical interactions in engineering design problems. The proposed model allows the investigation of the main effects and second-order effects in GSA according to functional analysis of variance (FANOVA) decomposition. To draw a higher-level understanding, we further use the subset decomposition method to analyze the significance of the groups of input variables. Using the design of a programmable material system (PMS) as an example, we demonstrate the use of our approach for examining the impact of material, architecture, and stimulus variables as well as their interactions. This information lays the foundation for managing design space complexity, summarizing the relationships between system components, and deriving design guidelines for PMS development.more » « less
- 
            Abstract This paper explores the Glauber dynamics of spin systems with asymmetric coupling, a scenario that inherently violates detailed balance, leading to non-equilibrium steady states. By focusing on weighted and heterogeneous networks, we extend the applicability of Glauber models to capture complex real-world interactions, such as those seen in multilayer and hierarchical systems. Under specific assumptions on the coupling matrix, we demonstrate the tractability of these dynamics in the limit as the number of spins approaches infinity. Our results highlight the influence of network topology on dynamic behavior and provide a framework for analyzing stochastic processes in diverse applications, from statistical mechanics to data-driven modeling in applied sciences. The approach also uncovers potential for leveraging non-equilibrium dynamics in machine learning and network analysis.more » « less
 An official website of the United States government
An official website of the United States government 
				
			
