Swimming at the microscale typically involves two modes of motion: mechanical propulsion and propulsion due to field interactions. During mechanical propulsion, particles swim by reconfiguring their geometry. When propelled by field interactions, body forces such as phoretic interactions drive mobility. In this work, we employ slender-body theory to explore how a bent rod actuator propels due to a mechanical mode of swimming via hinge articulations and due to a chemical mode of swimming via diffusiophoretic interactions with a solute field. Although previous theoretical studies have examined mechanical and chemical modes of swimming in isolation, the simultaneous investigation of both modes has remained unexplored. For the mechanical mode of swimming, our calculations, both numerical and analytical, recover Purcell’s scallop theorem and show that the bent rod actuator experiences zero net displacement during reciprocal motion. Additionally, we calculate the trajectories traced by a bent rod actuator under a non-reciprocal hinge articulation, revealing that these trajectories are influenced by the amplitude of the hinge articulation, geometric asymmetry, and the angular velocity distribution between the two arms of the bent rod actuator. We provide intuitive explanations for these effects using free-body diagrams. Furthermore, we explore the motion induced by simultaneous hinge articulations and self-diffusiophoresis. We observe that hinge articulations can modify the effective phoretic forces and torques acting on the bent rod actuator, either supporting or impeding propulsion. Additionally, during self-diffusiophoretic propulsion, reciprocal hinge articulations no longer result in zero net displacement. In summary, our findings chart a new direction for designing micron-sized objects that harness both mechanical and chemical modes of propulsion synchronously, offering a mechanism to enact control over trajectories.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 18, 2024
-
Diffusiophoresis: a novel transport mechanism - fundamentals, applications, and future opportunities
Diffusiophoresis involves the movement of colloidal-scale entities in response to concentration gradients of a solute. It is broadly categorized into two types: passive and active diffusiophoresis. In passive diffusiophoresis, external concentration gradients drive the motion, while in active diffusiophoresis, the colloidal entity itself assists in generating the gradients. In this perspective, we delve into the fundamental processes underlying passive and active diffusiophoresis and emphasize how prevalent both kinds of diffusiophoresis are in colloidal and natural systems. In particular, we highlight the colloidal focusing feature in passive diffusiophoresis and discuss how it underpins the variety of experimental observations and applications such as low-cost zetasizers, water filtration, and biological pattern formation. For active diffusiophoresis, we emphasize the dependence of particle trajectory on its shape and surface heterogeneity, and discuss how this dictates the applications such as drug delivery, removal of microplastics, and self-repairing materials. Finally, we offer insights and ideas regarding future opportunities in diffusiophoresis.
Free, publicly-accessible full text available November 30, 2024 -
Turing patterns are fundamental in biophysics, emerging from short-range activation and long-range inhibition processes. However, their paradigm is based on diffusive transport processes that yield patterns with shallower gradients than those observed in nature. A complete physical description of this discrepancy remains unknown. We propose a solution to this phenomenon by investigating the role of diffusiophoresis, which is the propulsion of colloids by a chemical gradient, in Turing patterns. Diffusiophoresis enables robust patterning of colloidal particles with substantially finer length scales than the accompanying chemical Turing patterns. A scaling analysis and a comparison to recent experiments indicate that chromatophores, ubiquitous in biological pattern formation, are likely diffusiophoretic and the colloidal Péclet number controls the pattern enhancement. This discovery suggests that important features of biological pattern formation can be explained with a universal mechanism that is quantified straightforwardly from the fundamental physics of colloids.
Free, publicly-accessible full text available November 10, 2024 -
Free, publicly-accessible full text available October 1, 2024
-
Recent experimental studies have utilized AC electric fields and electrochemical reactions in multicomponent electrolyte solutions to control colloidal assembly. However, theoretical investigations have thus far been limited to binary electrolytes and have overlooked the impact of electrochemical reactions. In this study, we address these limitations by analyzing a system with multicomponent electrolytes, while also relaxing the assumption of ideally blocking electrodes to capture the effect of surface electrochemical reactions. Through a regular perturbation analysis in the low-applied-potential regime, we solve the Poisson–Nernst–Planck equations and obtain effective equations for electrical potential and ion concentrations. By employing a combination of numerical and analytical calculations, our analysis reveals a significant finding: electrochemical reactions alone can generate asymmetric rectified electric fields (AREFs), i.e., time-averaged, long-range electric fields, even when the diffusivities of the ionic species are equal. This finding expands our understanding beyond the conventional notion that AREFs arise solely from diffusivity contrast. Furthermore, we demonstrate that AREFs induced by electrochemical reactions can be stronger than those resulting from asymmetric diffusivities. Additionally, we report the emergence of asymmetric rectified concentration fields (ARCFs), i.e., time-averaged, long-range concentration fields, which supports the electrodiffusiophoresis mechanism of colloidal assembly observed in experiments. We also derive analytical expressions for AREFs and ARCFs, emphasizing the role of imbalances in ionic strength and charge density, respectively, as the driving forces behind their formation. The results presented in this article advance the field of colloidal assembly and also have implications for improved understanding of electrolyte transport in electrochemical devices.