skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Informed and Systematic Method to Identify Variable Mid-L Dwarfs
Abstract Most brown dwarfs show some level of photometric or spectral variability. However, finding the most variable dwarfs more suited for a thorough variability monitoring campaign remained a challenge until a few years ago with the design of spectral indices to find the most likely L and T dwarfs using their near-infrared (NIR) single-epoch spectrum. In this work, we designed and tested NIR spectral indices to preselect the most likely variable L4–L8 dwarfs, complementing the indices presented by Ashraf et al. and Oliveros-Gomez et al. We used time-resolved NIR Hubble Space Telescope Wide Field Camera 3 spectra of an L6.0 dwarf, LP 261–75b, to design our novel spectral indices. We tested these spectral indices on 75 L4.0–L8.0 NIR SpeX/IRTF spectra, providing 27 new variable candidates. Our indices have a recovery rate of ∼80% and a false negative rate of ∼25%. All the known nonvariable brown dwarfs were found to be nonvariable by our indices. We estimated the variability fraction of our sample to be 51 38 + 4 %, which agrees with the variability fractions provided by Buenzli et al., Radigan et al., and Metchev et al. for L4–L8 dwarfs. These spectral indices may support the future selection of the most likely variable directly imaged exoplanets for studies with the James Webb Space Telescope and as well as the 30 m telescopes.  more » « less
Award ID(s):
2238468
PAR ID:
10571636
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
AAS Journals
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
967
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
149
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract SN H0pe is a triply imaged supernova (SN) at redshiftz= 1.78 discovered using the James Webb Space Telescope. In order to classify the SN spectroscopically and measure the relative time delays of its three images (designated A, B, and C), we acquired NIRSpec follow-up spectroscopy spanning 0.6–5μm. From the high signal-to-noise spectra of the two bright images B and C, we first classify the SN, whose spectra most closely match those of SN 1994D and SN 2013dy, as a Type Ia SN. We identify prominent blueshifted absorption features corresponding to Siiiλ6355 and CaiiHλ3970 and Kλ3935. We next measure the absolute phases of the three images from our spectra, which allow us to constrain their relative time delays. The absolute phases of the three images, determined by fitting the three spectra to Hsiao07 SN templates, are 6.5 1.8 + 2.4 days, 24.3 3.9 + 3.9 days, and 50.6 15.3 + 16.1 days for the brightest to faintest images. These correspond to relative time delays between Image A and Image B and between Image B and Image C of 122.3 43.8 + 43.7 days and 49.3 14.7 + 12.2 days, respectively. The SALT3-NIR model yields phases and time delays consistent with these values. After unblinding, we additionally explored the effect of using Hsiao07 template spectra for simulations through 80 days instead of 60 days past maximum, and found a small (11.5 and 1.0 days, respectively) yet statistically insignificant (∼0.25σand ∼0.1σ) effect on the inferred image delays. 
    more » « less
  2. Abstract We present the characterization of the low-gravity M6 dwarf 2MASS J06195260-2903592, previously identified as an unusual field object based on its strong IR excess and variable near-IR spectrum. Multiple epochs of low-resolution (R≈ 150) near-IR spectra show large-amplitude (≈0.1–0.5 mag) continuum variations on timescales of days to 12 yr, unlike the small-amplitude variability typical for field ultracool dwarfs. The variations between epochs are well-modeled as changes in the relative extinction (ΔAV≈ 2 mag). Similarly, Panoramic Survey Telescope and Rapid Response System 1 optical photometry varies on timescales as long as 11 yr (and possibly as short as an hour) and implies comparableAVchanges. Near Earth Object Wide-field Infrared Survey Explorer mid-IR light curves also suggest changes on 6 month timescales, with amplitudes consistent with the optical/near-IR extinction variations. However, near-IR spectra, near-IR photometry, and optical photometry obtained in the past year indicate that the source can also be stable on hourly and monthly timescales. From comparison to objects of similar spectral type, the total extinction of 2MASS J0619-2903 seems to beAV≈ 4–6 mag, with perhaps epochs of lower extinction. Gaia Early Data Release 3 (EDR3) finds that 2MASS J0619-2903 has a wide-separation (1.′2 = 10,450 au) stellar companion, with an isochronal age of 31 10 + 22 Myr and a mass of 0.30 0.03 + 0.04 M. Adopting this companion’s age and EDR3 distance (145.2 ± 0.6 pc), we estimate a mass of 0.11–0.17Mfor 2MASS J0619-2903. Altogether, 2MASS J0619-2903 appears to possess an unusually long-lived primordial circumstellar disk, perhaps making it a more obscured analog to the “Peter Pan” disks found around a few M dwarfs in nearby young moving groups. 
    more » « less
  3. Abstract Brown dwarf spectra offer vital testbeds for our understanding of the chemical and physical processes that sculpt substellar atmospheres. Recently, atmospheric retrieval approaches have been successfully applied to low-resolution (R∼ 100) spectra of L, T, and Y dwarfs, yielding constraints on the chemical abundances and temperature structures of these atmospheres. Medium-resolution (R∼ 103) spectra of brown dwarfs offer additional insight, as molecular features are more easily disentangled and the thermal structure of the upper atmosphere is better probed. We present results from a GPU-based retrieval analysis of a high signal-to-noise, medium-resolution (R∼ 6000) FIRE spectrum from 0.85 to 2.5μm of the T9 dwarf UGPS J072227.51–054031.2. At 60× higher spectral resolution than previous brown dwarf retrievals, a number of novel challenges arise. We examine the effect of different opacity sources, in particular for CH4. Furthermore, we find that flaws in the data like errors from order stitching can bias our constraints. We compare these retrieval results to those for anR∼ 100 spectrum of the same object, revealing how constraints on atmospheric abundances and temperatures improve by an order of magnitude or more with increased spectral resolution. In particular, we can constrain the abundance of H2S, which is undetectable at lower spectral resolution. While these medium-resolution retrievals offer the potential of precise, stellar-like constraints on atmospheric abundances (∼0.02 dex), our retrieved radius is unphysically small ( R = 0.50 0.01 + 0.01 RJup), indicating shortcomings with our modeling framework. This work is an initial investigation into brown dwarf retrievals at medium spectral resolution, offering guidance for future ground-based studies and JWST observations. 
    more » « less
  4. Abstract We present spectroscopic confirmation of a nearby L dwarf pair, CWISE J061741.79+194512.8AB. Keck/NIRES near-infrared spectroscopy shows that the pair is composed of an L2 dwarf primary and an L4 dwarf secondary. High resolution spectroscopy of the combined light system with Keck/NIRSPEC yields a radial velocity of 29.2 ± 0.3 km s−1and a projected rotational velocity v sin i = 41.6 2.6 + 2.7 km s−1. Our spectrophotometric distance estimate places the system at 28.2 ± 5.7 pc, significantly more distant than originally estimated in Kirkpatrick et al. The angular separation of the components is 1.″31 ± 0.″14, corresponding to a projected physical separation of 37 ± 8 au. 
    more » « less
  5. Abstract We analyze variability in 15-season optical lightcurves from the doubly imaged lensed quasar SDSS J165043.44+425149.3 (SDSS1650), comprising five seasons of monitoring data from the Maidanak Observatory (277 nights in total, including the two seasons of data previously presented in Vuissoz et al.), five seasons of overlapping data from the Mercator telescope (269 nights), and 12 seasons of monitoring data from the US Naval Observatory, Flagstaff Station at lower cadence (80 nights). We update the 2007 time-delay measurement for SDSS1650 with these new data, finding a time delay of Δ t AB = 55.1 3.7 + 4.0 days, with image A leading image B. We analyze the microlensing variability in these lightcurves using a Bayesian Monte Carlo technique to yield measurements of the size of the accretion disk atλrest= 2420 Å, finding a half-light radius of log(r1/2/cm) = 16.19 0.58 + 0.38 assuming a 60° inclination angle. This result is unchanged if we model 30% flux contamination from the broad-line region. We use the width of the Mgiiline in the existing Sloan Digital Sky Survey spectra to estimate the mass of this system’s supermassive black hole, findingMBH= 2.47 × 109M. We confirm that the accretion disk size in this system, whose black hole mass is on the very high end of theMBHscale, is fully consistent with the existing quasar accretion disk size–black hole mass relation. 
    more » « less