skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2238523

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Knowledge distillation leverages a teacher model to improve the training of a student model. A persistent challenge is that a better teacher does not always yield a better student, to which a common mitigation is to use additional supervision from several “intermediate” teachers. One empirically validated variant of this principle is progressive distillation, where the student learns from successive intermediate checkpoints of the teacher. Using sparse parity as a sandbox, we identify an implicit curriculum as one mechanism through which progressive distillation accelerates the student’s learning. This curriculum is available only through the intermediate checkpoints but not the final converged one, and imparts both empirical acceleration and a provable sample complexity benefit to the student. We then extend our investigation to Transformers trained on probabilistic context-free grammars (PCFGs) and real-world pre-training datasets (Wikipedia and Books). Through probing the teacher model, we identify an analogous implicit curriculum where the model progressively learns features that capture longer context. Our theoretical and empirical findings on sparse parity, complemented by empirical observations on more complex tasks, highlight the benefit of progressive distillation via implicit curriculum across setups. 
    more » « less
    Free, publicly-accessible full text available April 24, 2026
  2. Score matching is an approach to learning probability distributions parametrized up to a constant of proportionality (e.g. Energy-Based Models). The idea is to fit the score of the distribution, rather than the likelihood, thus avoiding the need to evaluate the constant of proportionality. While there's a clear algorithmic benefit, the statistical "cost'' can be steep: recent work by Koehler et al. 2022 showed that for distributions that have poor isoperimetric properties (a large Poincaré or log-Sobolev constant), score matching is substantially statistically less efficient than maximum likelihood. However, many natural realistic distributions, e.g. multimodal distributions as simple as a mixture of two Gaussians in one dimension -- have a poor Poincaré constant. 
    more » « less
    Free, publicly-accessible full text available June 30, 2025
  3. Score matching is an approach to learning probability distributions parametrized up to a constant of proportionality (e.g. Energy-Based Models). The idea is to fit the score of the distribution, rather than the likelihood, thus avoiding the need to evaluate the constant of proportionality. While there's a clear algorithmic benefit, the statistical "cost'' can be steep: recent work by Koehler et al. 2022 showed that for distributions that have poor isoperimetric properties (a large Poincaré or log-Sobolev constant), score matching is substantially statistically less efficient than maximum likelihood. However, many natural realistic distributions, e.g. multimodal distributions as simple as a mixture of two Gaussians in one dimension -- have a poor Poincaré constant. In this paper, we show a close connection between the mixing time of a broad class of Markov processes with generator  and an appropriately chosen generalized score matching loss that tries to fit pp. This allows us to adapt techniques to speed up Markov chains to construct better score-matching losses. In particular, ``preconditioning'' the diffusion can be translated to an appropriate ``preconditioning'' of the score loss. Lifting the chain by adding a temperature like in simulated tempering can be shown to result in a Gaussian-convolution annealed score matching loss, similar to Song and Ermon, 2019. Moreover, we show that if the distribution being learned is a finite mixture of Gaussians in d dimensions with a shared covariance, the sample complexity of annealed score matching is polynomial in the ambient dimension, the diameter of the means, and the smallest and largest eigenvalues of the covariance -- obviating the Poincaré constant-based lower bounds of the basic score matching loss shown in Koehler et al. 2022. 
    more » « less
    Free, publicly-accessible full text available June 30, 2025
  4. Recent research has developed several Monte Carlo methods for estimating the normalization constant (partition function) based on the idea of annealing. This means sampling successively from a path of distributions that interpolate between a tractable "proposal" distribution and the unnormalized "target" distribution. Prominent estimators in this family include annealed importance sampling and annealed noise-contrastive estimation (NCE). Such methods hinge on a number of design choices: which estimator to use, which path of distributions to use and whether to use a path at all; so far, there is no definitive theory on which choices are efficient. Here, we evaluate each design choice by the asymptotic estimation error it produces. First, we show that using NCE is more efficient than the importance sampling estimator, but in the limit of infinitesimal path steps, the difference vanishes. Second, we find that using the geometric path brings down the estimation error from an exponential to a polynomial function of the parameter distance between the target and proposal distributions. Third, we find that the arithmetic path, while rarely used, can offer optimality properties over the universally-used geometric path. In fact, in a particular limit, the optimal path is arithmetic. Based on this theory, we finally propose a two-step estimator to approximate the optimal path in an efficient way. 
    more » « less
  5. Transformer interpretability aims to understand the algorithm implemented by a learned Transformer by examining various aspects of the model, such as the weight matrices or the attention patterns. In this work, through a combination of theoretical results and carefully controlled experiments on synthetic data, we take a critical view of methods that exclusively focus on individual parts of the model, rather than consider the network as a whole. We consider a simple synthetic setup of learning a (bounded) Dyck language. Theoretically, we show that the set of models that (exactly or approximately) solve this task satisfy a structural characterization derived from ideas in formal languages (the pumping lemma). We use this characterization to show that the set of optima is qualitatively rich; in particular, the attention pattern of a single layer can be “nearly randomized”, while preserving the functionality of the network. We also show via extensive experiments that these constructions are not merely a theoretical artifact: even with severe constraints to the architecture of the model, vastly different solutions can be reached via standard training. Thus, interpretability claims based on inspecting individual heads or weight matrices in the Transformer can be misleading. 
    more » « less
  6. Score matching is an alternative to maximum likelihood (ML) for estimating a probability distribution parametrized up to a constant of proportionality. By fitting the ''score'' of the distribution, it sidesteps the need to compute this constant of proportionality (which is often intractable). While score matching and variants thereof are popular in practice, precise theoretical understanding of the benefits and tradeoffs with maximum likelihood---both computational and statistical---are not well understood. In this work, we give the first example of a natural exponential family of distributions such that the score matching loss is computationally efficient to optimize, and has a comparable statistical efficiency to ML, while the ML loss is intractable to optimize using a gradient-based method. The family consists of exponentials of polynomials of fixed degree, and our result can be viewed as a continuous analogue of recent developments in the discrete setting. Precisely, we show: (1) Designing a zeroth-order or first-order oracle for optimizing the maximum likelihood loss is NP-hard. (2) Maximum likelihood has a statistical efficiency polynomial in the ambient dimension and the radius of the parameters of the family. (3) Minimizing the score matching loss is both computationally and statistically efficient, with complexity polynomial in the ambient dimension. 
    more » « less
  7. Deep generative models parametrized up to a normalizing constant (e.g. energy-based models) are difficult to train by maximizing the likelihood of the data because the likelihood and/or gradients thereof cannot be explicitly or efficiently written down. Score matching is a training method, whereby instead of fitting the likelihood for the training data, we instead fit the score function, obviating the need to evaluate the partition function. Though this estimator is known to be consistent, it's unclear whether (and when) its statistical efficiency is comparable to that of maximum likelihood---which is known to be (asymptotically) optimal. We initiate this line of inquiry in this paper and show a tight connection between statistical efficiency of score matching and the isoperimetric properties of the distribution being estimated---i.e. the Poincar\'e, log-Sobolev and isoperimetric constant---quantities which govern the mixing time of Markov processes like Langevin dynamics. Roughly, we show that the score matching estimator is statistically comparable to the maximum likelihood when the distribution has a small isoperimetric constant. Conversely, if the distribution has a large isoperimetric constant---even for simple families of distributions like exponential families with rich enough sufficient statistics---score matching will be substantially less efficient than maximum likelihood. We suitably formalize these results both in the finite sample regime, and in the asymptotic regime. Finally, we identify a direct parallel in the discrete setting, where we connect the statistical properties of pseudolikelihood estimation with approximate tensorization of entropy and the Glauber dynamics. 
    more » « less