skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2238564

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The difficulty of achieving ohmic contacts is a long‐standing challenge for the development and integration of devices based on 2D materials, due to the large mismatch between their electronic properties and those of both traditional metal‐based and van der Waals (vdWs) electrodes. Research has focused primarily on the electronic energy band alignment, while the effects of momentum mismatch on carrier transport across the vdWs gaps are largely neglected. Graphene‐silicon junctions are utilized to demonstrate that electron momentum distribution can dominate the electronic properties of vdWs contacts. By judiciously introducing scattering centers at the interface that provide additional momentum to compensate the momentum mismatch, the junction conductivity is enhanced by more than three orders of magnitude, enabling the formation of high‐quality ohmic contacts. The study establishes the framework for the design of high‐performance ohmic vdWs contacts based on both energy and momentum matching, which can facilitate efficient heterogeneous integration of 2D–3D systems and the development of post‐CMOS architectures. 
    more » « less
  2. Abstract Van der Waals semiconductors (vdWS) offer superior mechanical and electrical properties and are promising for flexible microelectronics when combined with polymer substrates. However, the self‐passivated vdWS surfaces and their weak adhesion to polymers tend to cause interfacial sliding and wrinkling, and thus, are still challenging the reliability of vdWS‐based flexible devices. Here, an effective covalent vdWS–polymer lamination method with high stretch tolerance and excellent electronic performance is reported. Using molybdenum disulfide (MoS2)and polydimethylsiloxane (PDMS) as a case study, gold–chalcogen bonding and mercapto silane bridges are leveraged. The resulting composite structures exhibit more uniform and stronger interfacial adhesion. This enhanced coupling also enables the observation of a theoretically predicted tension‐induced band structure transition in MoS2. Moreover, no obvious degradation in the devices’ structural and electrical properties is identified after numerous mechanical cycle tests. This high‐quality lamination enhances the reliability of vdWS‐based flexible microelectronics, accelerating their practical applications in biomedical research and consumer electronics. 
    more » « less