Abstract The structural integrity of atomically thin two-dimensional molybdenum disulfide (MoS2) is crucial for high-temperature applications, including nanoelectronics and optoelectronics. This study explores the structural stability and electrical performance, under extended thermal exposure in air, of MoS2flakes synthesized via chemical vapor deposition (CVD) and mechanical exfoliation. The MoS2flakes, both CVD-grown and mechanically exfoliated, were subjected to heating at 200 °C with a relative humidity of 60(±5)% for a prolonged period and investigated with atomic force microscopy and Raman spectroscopy. This study shows that CVD-grown flakes developed noticeable cracks after prolonged heating, whereas mechanically exfoliated flakes mostly retained their structural integrity. Also, both types of flakes showed a decrease in layer thickness and lateral size over time, with mechanically exfoliated flakes exhibiting a comparatively smaller reduction in substrate coverage area. In addition, MoS2-based two-terminal devices were subjected to heating at 150 °C for approximately 1100 h, and their electrical characterization revealed a steady rise in current during constant voltage (5 V) conditions. This study enhances our understanding of MoS2stability and provides guidance for improving the reliability of MoS2-based devices in high-temperature electronic applications. 
                        more » 
                        « less   
                    
                            
                            Covalently‐Bonded Laminar Assembly of Van der Waals Semiconductors with Polymers: Toward High‐Performance Flexible Devices
                        
                    
    
            Abstract Van der Waals semiconductors (vdWS) offer superior mechanical and electrical properties and are promising for flexible microelectronics when combined with polymer substrates. However, the self‐passivated vdWS surfaces and their weak adhesion to polymers tend to cause interfacial sliding and wrinkling, and thus, are still challenging the reliability of vdWS‐based flexible devices. Here, an effective covalent vdWS–polymer lamination method with high stretch tolerance and excellent electronic performance is reported. Using molybdenum disulfide (MoS2)and polydimethylsiloxane (PDMS) as a case study, gold–chalcogen bonding and mercapto silane bridges are leveraged. The resulting composite structures exhibit more uniform and stronger interfacial adhesion. This enhanced coupling also enables the observation of a theoretically predicted tension‐induced band structure transition in MoS2. Moreover, no obvious degradation in the devices’ structural and electrical properties is identified after numerous mechanical cycle tests. This high‐quality lamination enhances the reliability of vdWS‐based flexible microelectronics, accelerating their practical applications in biomedical research and consumer electronics. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2238564
- PAR ID:
- 10492960
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Small
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            High‐energy‐density storage devices play a major role in modern electronics from traditional lithium‐ion batteries to supercapacitors for a variety of applications from rechargeable devices to advanced military equipment. Despite the mass adoption of polymer capacitors, their application is limited by their low energy densities and low‐temperature tolerance. Polymer nanocomposites based on 2D nanomaterials have superior capacitive energy densities, higher thermal stabilities, and higher mechanical strength as compared to the pristine polymers and nanocomposites based on 0D or 1D nanomaterials, thus making them ideal for high‐energy‐density dielectric energy storage applications. Here, the recent advances in 2D‐nanomaterial‐based nanocomposites and their implications for energy storage applications are reviewed. Nanocomposites based on conducting 2D nanofillers such as graphene, reduced graphene oxide, MXenes, semiconducting 2D nanofillers including transition metal dichalcogenides such as MoS2, dielectric 2D nanofillers including hBN, Mica, Al2O3, TiO2, Ca2Nb3O10and MMT, and their effects on permittivity, dielectric strength, capacitive energy density, efficiency, thermal stability, and the mechanical strength, are discussed. Also, the theory and machine‐learning‐guided design of polymer 2D nanomaterial composites is learnt and the challenges and opportunities for developing ultrahigh‐capacitive‐energy‐density devices based on these nanofiller polymer composites are presented.more » « less
- 
            Abstract 2D memristors have demonstrated attractive resistive switching characteristics recently but also suffer from the reliability issue, which limits practical applications. Previous efforts on 2D memristors have primarily focused on exploring new material systems, while damage from the metallization step remains a practical concern for the reliability of 2D memristors. Here, the impact of metallization conditions and the thickness of MoS2films on the reliability and other device metrics of MoS2‐based memristors is carefully studied. The statistical electrical measurements show that the reliability can be improved to 92% for yield and improved by ≈16× for average DC cycling endurance in the devices by reducing the top electrode (TE) deposition rate and increasing the thickness of MoS2films. Intriguing convergence of switching voltages and resistance ratio is revealed by the statistical analysis of experimental switching cycles. An “effective switching layer” model compatible with both monolayer and few‐layer MoS2, is proposed to understand the reliability improvement related to the optimization of fabrication configuration and the convergence of switching metrics. The Monte Carlo simulations help illustrate the underlying physics of endurance failure associated with cluster formation and provide additional insight into endurance improvement with device fabrication optimization.more » « less
- 
            Abstract Monolayer molybdenum disulfide has been previously discovered to exhibit non-volatile resistive switching behavior in a vertical metal-insulator-metal structure, featuring ultra-thin sub-nanometer active layer thickness. However, the reliability of these nascent 2D-based memory devices was not previously investigated for practical applications. Here, we employ an electron irradiation treatment on monolayer MoS2film to modify the defect properties. Raman, photoluminescence, and X-ray photoelectron spectroscopy measurements have been performed to confirm the increasing amount of sulfur vacancies introduced by the e-beam irradiation process. The statistical electrical studies reveal the reliability can be improved by up to 1.5× for yield and 11× for average DC cycling endurance in the devices with a moderate radiation dose compared to unirradiated devices. Based on our previously proposed virtual conductive-point model with the metal ion substitution into sulfur vacancy, Monte Carlo simulations have been performed to illustrate the irradiation effect on device reliability, elucidating a clustering failure mechanism. This work provides an approach by electron irradiation to enhance the reliability of 2D memory devices and inspires further research in defect engineering to precisely control the switching properties for a wide range of applications from memory computing to radio-frequency switches.more » « less
- 
            Two-dimensional (2D) materials assembled into van der Waals (vdW) heterostructures contain unlimited combinations of mechanical, optical, and electrical properties that can be harnessed for potential device applications. Critically, these structures require control over interfacial adhesion for enabling their construction and have enough integrity to survive industrial fabrication processes upon their integration. Here, we promptly determine the adhesion quality of various exfoliated 2D materials on conventional SiO 2 /Si substrates using ultrasonic delamination threshold testing. This test allows us to quickly infer relative substrate adhesion based on the percent area of 2D flakes that survive a fixed time in an ultrasonic bath, allowing for control over process parameters that yield high or poor adhesion. We leverage this control of adhesion to optimize the vdW heterostructure assembly process, where we show that samples with high or low substrate adhesion relative to each other can be used selectively to construct high-throughput vdW stacks. Instead of tuning the adhesion of polymer stamps to 2D materials with constant 2D-substrate adhesion, we tune the 2D-substrate adhesion with constant stamp adhesion to 2D materials. The polymer stamps may be reused without any polymer melting steps, thus avoiding high temperatures (<120 °C) and allowing for high-throughput production. We show that this procedure can be used to create high-quality 2D twisted bilayer graphene on SiO 2 /Si, characterized with atomic force microscopy and Raman spectroscopic mapping, as well as low-angle twisted bilayer WSe 2 on h-BN/SiO 2 /Si, where we show direct real-space visualization of moiré reconstruction with tilt-angle dependent scanning electron microscopy.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    