- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Pikovski, Igor (3)
-
Tobar, Germain (2)
-
Beitel, Thomas (1)
-
Borregaard, Johannes (1)
-
Manikandan, Sreenath K (1)
-
Tobar, Michael_Edmund (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We propose a multi-mode bar consisting of mass elements of decreasing size for the implementation of a gravitational version of the photo-electric effect through the stimulated absorption of up to kHz gravitons from a binary neutron star merger and post-merger. We find that the multi-mode detector has normal modes that retain the coupling strength to the gravitational wave of the largest mass-element, while only having an effective mass comparable to the mass of the smallest element. This allows the normal modes to have graviton absorption rates due to the tonne-scale largest mass, while the single graviton absorption process in the normal mode could be resolved through energy measurements of a mass-element in-principle smaller than pico-gram scale. We argue the feasibility of directly counting gravito-phonons in the bar through energy measurements of the end mass. This improves the transduction of the single-graviton signal, enhancing the feasibility of detecting single gravitons.more » « less
-
Tobar, Germain; Manikandan, Sreenath K; Beitel, Thomas; Pikovski, Igor (, Nature Communications)Abstract The quantization of gravity is widely believed to result in gravitons – particles of discrete energy that form gravitational waves. But their detection has so far been considered impossible. Here we show that signatures of single graviton exchange can be observed in laboratory experiments. We show that stimulated and spontaneous single-graviton processes can become relevant for massive quantum acoustic resonators and that stimulated absorption can be resolved through continuous sensing of quantum jumps. We analyze the feasibility of observing the exchange of single energy quanta between matter and gravitational waves. Our results show that single graviton signatures are within reach of experiments. In analogy to the discovery of the photo-electric effect for photons, such signatures can provide the first experimental clue of the quantization of gravity.more » « less
-
Borregaard, Johannes; Pikovski, Igor (, Physical Review Research)Quantum technologies present new opportunities for fundamental tests of nature. One potential application is to probe the interplay between quantum physics and general relativity—a field of physics with no empirical evidence yet. Here we show that quantum networks open a new window to test this interface. We demonstrate how photon mediated entanglement between atomic or atomlike systems can be used to probe time-dilation-induced entanglement and interference modulation. Key are nonlocal measurements between clocks in a gravitational field, which can be achieved either through direct photon interference or by using auxiliary entanglement. The resulting observable depends on the interference between different proper times, and can only be explained if both quantum theory and general relativity are taken into account. The proposed protocol enables clock interferometry on kilometer-scale separations and beyond. Our work thus shows a realistic experimental route for a first test of quantum theory on curved spacetime, opening up new scientific opportunities for quantum networks. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available May 1, 2026
An official website of the United States government
