skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2239498

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We propose a multi-mode bar consisting of mass elements of decreasing size for the implementation of a gravitational version of the photo-electric effect through the stimulated absorption of up to kHz gravitons from a binary neutron star merger and post-merger. We find that the multi-mode detector has normal modes that retain the coupling strength to the gravitational wave of the largest mass-element, while only having an effective mass comparable to the mass of the smallest element. This allows the normal modes to have graviton absorption rates due to the tonne-scale largest mass, while the single graviton absorption process in the normal mode could be resolved through energy measurements of a mass-element in-principle smaller than pico-gram scale. We argue the feasibility of directly counting gravito-phonons in the bar through energy measurements of the end mass. This improves the transduction of the single-graviton signal, enhancing the feasibility of detecting single gravitons. 
    more » « less
  2. Abstract The quantization of gravity is widely believed to result in gravitons – particles of discrete energy that form gravitational waves. But their detection has so far been considered impossible. Here we show that signatures of single graviton exchange can be observed in laboratory experiments. We show that stimulated and spontaneous single-graviton processes can become relevant for massive quantum acoustic resonators and that stimulated absorption can be resolved through continuous sensing of quantum jumps. We analyze the feasibility of observing the exchange of single energy quanta between matter and gravitational waves. Our results show that single graviton signatures are within reach of experiments. In analogy to the discovery of the photo-electric effect for photons, such signatures can provide the first experimental clue of the quantization of gravity. 
    more » « less
  3. Quantum technologies present new opportunities for fundamental tests of nature. One potential application is to probe the interplay between quantum physics and general relativity—a field of physics with no empirical evidence yet. Here we show that quantum networks open a new window to test this interface. We demonstrate how photon mediated entanglement between atomic or atomlike systems can be used to probe time-dilation-induced entanglement and interference modulation. Key are nonlocal measurements between clocks in a gravitational field, which can be achieved either through direct photon interference or by using auxiliary entanglement. The resulting observable depends on the interference between different proper times, and can only be explained if both quantum theory and general relativity are taken into account. The proposed protocol enables clock interferometry on kilometer-scale separations and beyond. Our work thus shows a realistic experimental route for a first test of quantum theory on curved spacetime, opening up new scientific opportunities for quantum networks. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available May 1, 2026