Abstract We propose a multi-mode bar consisting of mass elements of decreasing size for the implementation of a gravitational version of the photo-electric effect through the stimulated absorption of up to kHz gravitons from a binary neutron star merger and post-merger. We find that the multi-mode detector has normal modes that retain the coupling strength to the gravitational wave of the largest mass-element, while only having an effective mass comparable to the mass of the smallest element. This allows the normal modes to have graviton absorption rates due to the tonne-scale largest mass, while the single graviton absorption process in the normal mode could be resolved through energy measurements of a mass-element in-principle smaller than pico-gram scale. We argue the feasibility of directly counting gravito-phonons in the bar through energy measurements of the end mass. This improves the transduction of the single-graviton signal, enhancing the feasibility of detecting single gravitons.
more »
« less
Detecting single gravitons with quantum sensing
Abstract The quantization of gravity is widely believed to result in gravitons – particles of discrete energy that form gravitational waves. But their detection has so far been considered impossible. Here we show that signatures of single graviton exchange can be observed in laboratory experiments. We show that stimulated and spontaneous single-graviton processes can become relevant for massive quantum acoustic resonators and that stimulated absorption can be resolved through continuous sensing of quantum jumps. We analyze the feasibility of observing the exchange of single energy quanta between matter and gravitational waves. Our results show that single graviton signatures are within reach of experiments. In analogy to the discovery of the photo-electric effect for photons, such signatures can provide the first experimental clue of the quantization of gravity.
more »
« less
- Award ID(s):
- 2239498
- PAR ID:
- 10593197
- Publisher / Repository:
- Nature Springer Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> In ordinary gravitational theories, any local bulk operator in an entanglement wedge is accompanied by a long-range gravitational dressing that extends to the asymptotic part of the wedge. Islands are the only known examples of entanglement wedges that are disconnected from the asymptotic region of spacetime. In this paper, we show that the lack of an asymptotic region in islands creates a potential puzzle that involves the gravitational Gauss law, independently of whether or not there is a non-gravitational bath. In a theory with long-range gravity, the energy of an excitation localized to the island can be detected from outside the island, in contradiction with the principle that operators in an entanglement wedge should commute with operators from its complement. In several known examples, we show that this tension is resolved because islands appear in conjunction with a massive graviton. We also derive some additional consistency conditions that must be obeyed by islands in decoupled systems. Our arguments suggest that islands might not constitute consistent entanglement wedges in standard theories of massless gravity where the Gauss law applies.more » « less
-
A bstract Asymptotically nonlocal field theories interpolate between Lee-Wick theories with multiple propagator poles, and ghost-free nonlocal theories. Previous work on asymp- totically nonlocal scalar, Abelian, and non-Abelian gauge theories has demonstrated the existence of an emergent regulator scale that is hierarchically smaller than the lightest Lee-Wick partner, in a limit where the Lee-Wick spectrum becomes dense and decoupled. We generalize this construction to linearized gravity, and demonstrate the emergent regula- tor scale in three examples: by studying the resolution of the singularity (i) at the origin in the classical solution for the metric of a point particle, and (ii) in the nonrelativistic gravitational potential computed via a one-graviton exchange amplitude; (iii) we also show how this derived scale regulates the one-loop graviton contribution to the self energy of a real scalar field. We comment briefly on the generalization of our approach to the full, nonlinear theory of gravity.more » « less
-
A<sc>bstract</sc> Dependence on the graviton gauge enters the conventional effective field equations because they fail to account for quantum gravitational correlations with the source which excites the effective field and with the observer who measures it. Including these correlations has been shown to eliminate gauge dependence in flat space background. We generalize the technique to de Sitter background for the case of the 1-loop graviton corrections to the exchange potential of a massless, minimally coupled scalar.more » « less
-
A<sc>bstract</sc> Previous numerical investigations of gravitational particle production during the coherent oscillation period of inflation displayed unexplained fluctuations in the spectral density of the produced particles. We argue that these features are due to the quantum interference of the coherent scattering reactions that produce the particles. We provide accurate analytic formulae to compute the particle production amplitude for a conformally- coupled scalar field, including the interference effect in the kinematic region where the production can be interpreted as inflaton scattering into scalar final states via graviton exchange.more » « less
An official website of the United States government
