skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2242796

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The creation of next‐generation flexible and conformable magneto‐optic (MO) materials with dramatically enhanced Verdet constant will significantly advance technologies, including optical isolation, magnetic quantum spin fluctuation measurements, and cold atom spin coherence probes, while opening new possibilities for mapping weakly emanating magnetic fields from sources, including microelectronics or brain activity. The results presented here show that the natural coupling of electric and magnetic dipoles in a chiral polymer with large optical activity (circular birefringence) is significantly enhanced by combined plasmonic field and magnetic interactions of plasmonic nanostars and magnetic nanoparticles to yield a dramatically increased Verdet constant within an optical path of a few hundred nanometers. A 175 ± 10 nm film of this material produces up to 600 mdeg of relative MO rotation at 510 nm, which translates to a record‐high Verdet constant of 3.1 × 107deg T−1m−1at 93 K, more than two orders of magnitude higher than the current state of the art MO garnet crystals. The room temperature Verdet constant substantially exceeds that of other thin film nanocomposites reported to date. Manipulation of electric and magnetic coupling offers an unprecedented opportunity to tailor the magnitude, sign, and spectral dispersion of the Verdet constant over a broad range of wavelengths. 
    more » « less
    Free, publicly-accessible full text available March 19, 2026
  2. Abstract Two-dimensional carbides and nitrides, known as MXenes, are promising for water-processable coatings due to their excellent electrical, thermal, and optical properties. However, depositing hydrophilic MXene nanosheets onto inert or hydrophobic polymer surfaces requires plasma treatment or chemical modification. This study demonstrates a universal salt-assisted assembly method that produces ultra-thin, uniform MXene coatings with exceptional mechanical stability and washability on various polymers, including high-performance polymers for extreme temperatures. The salt in the Ti3C2Txcolloidal suspension reduces surface charges, enabling electrostatically hydrophobized MXene deposition on polymers. A library of salts was used to optimize assembly kinetics and coating morphology. A 170 nm MXene coating can reduce radiation temperature by ~200 °C on a 300 °C PEEK substrate, while the coating on Kevlar fabric provides comfort in extreme conditions, including outer space and polar regions. 
    more » « less
  3. Abstract Covalent 2D magnets such as Cr2Te3, which feature self‐intercalated magnetic cations located between monolayers of transition‐metal dichalcogenide material, offer a unique platform for controlling magnetic order and spin texture, enabling new potential applications for spintronic devices. Here, it is demonstrated that the unconventional anomalous Hall effect (AHE) in Cr2Te3, characterized by additional humps and dips near the coercive field in AHE hysteresis, originates from an intrinsic mechanism dictated by the self‐intercalation. This mechanism is distinctly different from previously proposed mechanisms such as topological Hall effect, or two‐channel AHE arising from spatial inhomogeneities. Crucially, multiple Weyl‐like nodes emerge in the electronic band structure due to strong spin‐orbit coupling, whose positions relative to the Fermi level is sensitively modulated by the canting angles of the self‐intercalated Cr cations. These nodes contribute strongly to the Berry curvature and AHE conductivity. This component competes with the contribution from bands that are less affected by the self‐intercalation, resulting in a sign change in AHE with temperature and the emergence of additional humps and dips. The findings provide compelling evidence for the intrinsic origin of the unconventional AHE in Cr2Te3 and further establish self‐intercalation as a control knob for engineering AHE in complex magnets. 
    more » « less