- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Greenfeld, Rachel (3)
-
Tao, Terence (2)
-
Grebík, Jan (1)
-
Ivanisvili, Paata (1)
-
Madrid, Jose (1)
-
Rozhoň, Václav (1)
-
de Dios Pont, Jaume (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
Gowers, Tim (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
de Dios Pont, Jaume; Greenfeld, Rachel; Ivanisvili, Paata; Madrid, Jose (, Discrete analysis)Gowers, Tim (Ed.)We prove that for $$d\geq 0$$ and $$k\geq 2$$, for any subset $$A$$ of a discrete cube $$\{0,1\}^d$$, the $k-$higher energy of $$A$$ (i.e., the number of $2k-$tuples $$(a_1,a_2,\dots,a_{2k})$$ in $$A^{2k}$$ with $$a_1-a_2=a_3-a_4=\dots=a_{2k-1}-a_{2k}$$) is at most $$|A|^{\log_{2}(2^k+2)}$$, and $$\log_{2}(2^k+2)$$ is the best possible exponent. We also show that if $$d\geq 0$$ and $$2\leq k\leq 10$$, for any subset $$A$$ of a discrete cube $$\{0,1\}^d$$, the $k-$additive energy of $$A$$ (i.e., the number of $2k-$tuples $$(a_1,a_2,\dots,a_{2k})$$ in $$A^{2k}$$ with $$a_1+a_2+\dots+a_k=a_{k+1}+a_{k+2}+\dots+a_{2k}$$) is at most $$|A|^{\log_2{ \binom{2k}{k}}}$$, and $$\log_2{ \binom{2k}{k}}$$ is the best possible exponent. We discuss the analogous problems for the sets $$\{0,1,\dots,n\}^d$$ for $$n\geq2$$.more » « less
-
Grebík, Jan; Greenfeld, Rachel; Rozhoň, Václav; Tao, Terence (, International Mathematics Research Notices)Abstract Let $$X$$ be a measure space with a measure-preserving action $$(g,x) \mapsto g \cdot x$$ of an abelian group $$G$$. We consider the problem of understanding the structure of measurable tilings $$F \odot A = X$$ of $$X$$ by a measurable tile $$A \subset X$$ translated by a finite set $$F \subset G$$ of shifts, thus the translates $$f \cdot A$$, $$f \in F$$ partition $$X$$ up to null sets. Adapting arguments from previous literature, we establish a “dilation lemma” that asserts, roughly speaking, that $$F \odot A = X$$ implies $$F^{r} \odot A = X$$ for a large family of integer dilations $$r$$, and use this to establish a structure theorem for such tilings analogous to that established recently by the second and fourth authors. As applications of this theorem, we completely classify those random tilings of finitely generated abelian groups that are “factors of iid”, and show that measurable tilings of a torus $${\mathbb{T}}^{d}$$ can always be continuously (in fact linearly) deformed into a tiling with rational shifts, with particularly strong results in the low-dimensional cases $d=1,2$ (in particular resolving a conjecture of Conley, the first author, and Pikhurko in the $d=1$ case).more » « less
An official website of the United States government

Full Text Available