Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The relative roles of protoplanetary differentiation versus late accretion in establishing Earth’s life-essential volatile element inventory are being hotly debated. To address this issue, we employ first-principles calculations to investigate nitrogen (N) isotope fractionation during Earth’s accretion and differentiation. We find that segregation of an iron core would enrich heavy N isotopes in the residual silicate, while evaporation within a H2-dominated nebular gas produces an enrichment of light N isotope in the planetesimals. The combined effect of early planetesimal evaporation followed by core formation enriches the bulk silicate Earth in light N isotopes. If Earth is comprised primarily of enstatite-chondrite-like material, as indicated by other isotope systems, then late accretion of carbonaceous-chondrite-like material must contribute ~ 30–100% of the N budget in present-day bulk silicate Earth. However, mass balance using N isotope constraints shows that the late veneer contributes only a limited amount of other volatile elements (e.g., H, S, and C) to Earth.more » « less
-
Deep carbon cycle is crucial for mantle dynamics and maintaining Earth’s habitability. Recycled carbonates are a strong oxidant in mantle carbon-iron redox reactions, leading to the formation of highly oxidized mantle domains and deep carbon storage. Here we report high Fe3+/∑Fe values in Cenozoic intraplate basalts from eastern China, which are correlated with geochemical and isotopic compositions that point to a common role of carbonated melt with recycled carbonate signatures. We propose that the source of these highly oxidized basalts has been oxidized by carbonated melts derived from the stagnant subducted slab in the mantle transition zone. Diamonds formed during the carbon-iron redox reaction were separated from the melt due to density differences. This would leave a large amount of carbon (about four times of preindustrial atmospheric carbon budget) stored in the deep mantle and isolated from global carbon cycle. As such, the amounts of subducted slabs stagnated at mantle transition zone can be an important factor regulating the climate.more » « less
-
Holden Thorp, Ali Shilatifard (Ed.)The origin of Earth’s volatile elements is highly debated. Comparing the chalcogen isotope ratios in the bulk silicate Earth (BSE) to those of its possible building blocks, chondritic meteorites, allows constraints on the origin of Earth’s volatiles; however, these comparisons are complicated by potential isotopic fractionation during protoplanetary differentiation, which largely remains poorly understood. Using first-principles calculations, we find that core-mantle differentiation does not notably fractionate selenium and tellurium isotopes, while equilibrium evaporation from early planetesimals would enrich selenium and tellurium in heavy isotopes in the BSE. The sulfur, selenium, and tellurium isotopic signatures of the BSE reveal that protoplanetary differentiation plays a key role in establishing most of Earth’s volatile elements, and a late veneer does not substantially contribute to the BSE’s volatile inventory.more » « less
An official website of the United States government
