Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract To optimize CO2 EOR operations, such as Huff and Puff (HnP), it is necessary to have a good understanding of oil- CO2 transport both at nanopore and at reservoir scales. In this study, experiments were performed to investigate how pore adsorbed CO2 can mediate oil flow in analog nanopore arrays. These experiments quantified how much interfacial CO2 contributed to improving permeability to oil in nanopores, in addition to increasing mobility by viscosity reduction. The experimental procedure involved flowing C10 (decane) with and without CO2 through an Anodic Aluminum Oxide (AAO) membrane at a defined differential pressure and recording flow rate. Viscosity obtained from correlations was then used to calculate membrane pore permeability. Inlet pump pressure was lower than the oil-CO2 miscibility pressure at the test conditions. Pore permeability improvement due to pore wall adsorbed CO2 was computed by isolating the effect of viscosity reduction of the bulk fluid. An overall pore-permeability increase of 15% was observed in the CO2 and C10 mixture experiments compared to the C10-only experiments, due to interfacial CO2. These results lend support to the previous molecular dynamics simulations, which predicted that interfacial CO2 can significantly modulate C10 flow in nanopores up to 10 nm diameter (Moh et al. 2020). Some differences from the molecular dynamics simulations of Moh et al. (2020) observed in the experimental study also verify the potential contribution of other phenomena to the permeability enhancement of the nanoporous membrane in the presence of CO2. Therefore, this study provides further impetus for exploring the unique nanofluidic physics of oil and CO2 transport arising from CO2 at oil-wall interfaces. The demonstrated significance of the unique nanopore phenomena, which have not been observed and incorporated into large-scale flow models, emphasizes the importance of identifying and incorporating nanofluidic physics into commercial reservoir simulators' transport models for better representation of CO2 and oil flow in unconventional reservoirs.more » « less
-
Fluid imbibition into porous media featuring nanopores is ubiquitous in applications such as oil recovery from unconventional reservoirs and material processing. While the imbibition of pure fluids has been extensively studied, the imbibition of fluid mixtures is little explored. Here, we report the molecular dynamics study of the imbibition of model crude oil into nanometer-wide mineral pores, both when pore walls are dry and prewetted by residual water films. Results show the fastest imbibition and fastest propagation of molecularly thin precursor films ahead of the oil meniscus in the dry pore system. The presence of thin water films on pore walls corresponding to an environmental relative humidity of 30% slows down but still allows the spontaneous imbibition of single-component oil. Introducing polar components into the oil slows down the imbibition into dry nanopores, due partly to the clogging of the pore entrance. Strong selectivity toward nonpolar oil is evident. The slowdown of imbibition by polar oil is less significant in the prewetted pores than in dry pores, but the selectivity toward nonpolar oil remains strong.more » « lessFree, publicly-accessible full text available July 1, 2026
An official website of the United States government
