Molecular insights of condensate trapping mechanism in shale oil reservoirs and its implications on lean gas enhanced oil recovery
                        
                    - Award ID(s):
- 2246274
- PAR ID:
- 10480933
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Chemical Engineering Journal
- Volume:
- 476
- Issue:
- C
- ISSN:
- 1385-8947
- Page Range / eLocation ID:
- 146366
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            Abstract A surfactant-free oil-in-oil emulsion-templating method is presented for fabrication of monolithic polyimide aerogel foams using monomer systems that produce fast sol–gel transition. An aerogel foam is a high porosity (∼90%) material with coexisting meso- and macropores inherent to aerogels with externally introduced micrometer size open cells (macrovoids) that are reminiscent of foams. The macrovoids are introduced in polyimide sol using surfactant-free emulsion-templating of droplets of an immiscible liquid that are stabilized against coalescence by fast sol–gel transition. Three immiscible liquids – cyclohexane, n -heptane, and silicone oil – are considered in this work for surfactant-free emulsion-templating. The aerogel foam monoliths, recovered by supercritical drying, exhibit smaller size macrovoids when n -heptane and cyclohexane are used as emulsion-templating liquid, while the overall porosity and the bulk density show weak dependence on the emulsion-templating liquid.more » « less
- 
            Membrane fouling is a major issue in many membrane applications. There are numerous methods used in attempt to mitigate membrane fouling, with one method being membrane surface patterning. However, it is still unclear how the ratio of foulant size to pattern size affects membrane fouling. In this study, we investigated constant foulant size while varying the pattern size on the membrane surface to be smaller than (300-nm), equal to (10-μm), and larger than (50-μm) the foulant (10-μm) on polyamide nanofiltration membranes. These membranes were compared to a commercial nanofiltration membrane and a control flat synthesized membrane. The membranes were tested with water, 2000 ppm Na2SO4, and three cycles of a n-dodecane (as oil) brine solution in a dead-end cell to assess the fouling resistance and flux recovery ability of each polyamide membrane type. From the fouling experiments, it was determined that none of the pattern sizes significantly affect the flux recovery ratio, but smaller than and larger than patterns decreased the fouling rate on the polyamide membranes by a small margin.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    