skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2246877

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We solve two open problems in Coxeter–Catalan combinatorics. First, we introduce a family of rational noncrossing objects for any finite Coxeter group, using the combinatorics of distinguished subwords. Second, we give a type‐uniform proof that these noncrossing Catalan objects are counted by the rational Coxeter–Catalan number, using the character theory of the associated Hecke algebra and the properties of Lusztig's exotic Fourier transform. We solve the same problems for rational noncrossing parking objects. 
    more » « less
  2. Abstract Although both noncrossing partitions and nonnesting partitions are uniformly enumerated for Weyl groups, the exact relationship between these two sets of combinatorial objects remains frustratingly mysterious. In this paper, we give a precise combinatorial answer in the case of the symmetric group: for any standard Coxeter element, we construct an equivariant bijection between noncrossing partitions under theKreweras complementand nonnesting partitions under a Coxeter‐theoretically natural cyclic action we call theKroweras complement. Our equivariant bijection is the unique bijection that is both equivariant and support‐preserving, and is built using local rules depending on a new definition ofcharmed roots. Charmed roots are determined by the choice of Coxeter element — in the special case of the linear Coxeter element , we recover one of the standard bijections between noncrossing and nonnesting partitions. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  3. Free, publicly-accessible full text available June 1, 2026
  4. The three main objects in noncrossing Catalan combinatorics associated to a finite Coxeter system are noncrossing partitions, clusters, and sortable elements. The first two of these have known Fuß-Catalan generalizations. We provide new viewpoints for both and introduce the missing generalization of sortable elements by lifting the theory from the Coxeter system to the associated positive Artin monoid. We show how this new perspective ties together all three generalizations, providing a uniform framework for noncrossing Fuß-Catalan combinatorics. Having developed the combinatorial theory, we provide an interpretation of our generalizations in the language of the representation theory of hereditary Artin algebras. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  5. The Wiener index of a finite graph $$G$$ is the sum over all pairs $(p,q)$ of vertices of $$G$$ of the distance between $$p$$ and $$q$$. When $$P$$ is a finite poset, we define its Wiener index as the Wiener index of the graph of its Hasse diagram. In this paper, we find exact expressions for the Wiener indices of the distributive lattices of order ideals in minuscule posets. For infinite families of such posets, we also provide results on the asymptotic distribution of the distance between two random order ideals. 
    more » « less
  6. We define an action of words in [ m ] n [m]^n on R m {\mathbb {R}}^m to give a new characterization of rational parking functions—they are exactly those words whose action has a fixed point. We use this viewpoint to give a simple definition of Gorsky, Mazin, and Vazirani’s zeta map on rational parking functions when m m and n n are coprime [Trans. Amer. Math. Soc. 368 (2016), pp. 8403–8445], and prove that this zeta map is invertible. A specialization recovers Loehr and Warrington’s sweep map on rational Dyck paths (see D. Armstrong, N. A. Loehr, and G. S. Warrington [Adv. Math. 284 (2015), pp. 159–185; E. Gorsky, M. Mazin, and M. Vazirani [Electron. J. Combin. 24 (2017), p. 29; H. Thomas and N. Williams, Selecta Math. (N.S.) 24 (2018), pp. 2003–2034]). 
    more » « less