skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Cataland: Why the Fuß?
The three main objects in noncrossing Catalan combinatorics associated to a finite Coxeter system are noncrossing partitions, clusters, and sortable elements. The first two of these have known Fuß-Catalan generalizations. We provide new viewpoints for both and introduce the missing generalization of sortable elements by lifting the theory from the Coxeter system to the associated positive Artin monoid. We show how this new perspective ties together all three generalizations, providing a uniform framework for noncrossing Fuß-Catalan combinatorics. Having developed the combinatorial theory, we provide an interpretation of our generalizations in the language of the representation theory of hereditary Artin algebras.  more » « less
Award ID(s):
2246877
PAR ID:
10611182
Author(s) / Creator(s):
; ;
Publisher / Repository:
Memoirs of the American Mathematical Society
Date Published:
Journal Name:
Memoirs of the American Mathematical Society
Volume:
305
Issue:
1535
ISSN:
0065-9266
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We solve two open problems in Coxeter–Catalan combinatorics. First, we introduce a family of rational noncrossing objects for any finite Coxeter group, using the combinatorics of distinguished subwords. Second, we give a type‐uniform proof that these noncrossing Catalan objects are counted by the rational Coxeter–Catalan number, using the character theory of the associated Hecke algebra and the properties of Lusztig's exotic Fourier transform. We solve the same problems for rational noncrossing parking objects. 
    more » « less
  2. The noncrossing partition poset associated to a Coxeter group $$W$$ and Coxeter element $$c$$ is the interval $$[1,c]_T$$ in the absolute order on $$W$$. We construct a new model of noncrossing partititions for $$W$$ of classical affine type, using planar diagrams. The model in type $$\afftype{A}$$ consists of noncrossing partitions of an annulus. In type~$$\afftype{C}$$, the model consists of symmetric noncrossing partitions of an annulus or noncrossing partitions of a disk with two orbifold points. Following the lead of McCammond and Sulway, we complete $$[1,c]_T$$ to a lattice by factoring the translations in $$[1,c]_T$$, but the combinatorics of the planar diagrams leads us to make different choices about how to factor. 
    more » « less
  3. Abstract Although both noncrossing partitions and nonnesting partitions are uniformly enumerated for Weyl groups, the exact relationship between these two sets of combinatorial objects remains frustratingly mysterious. In this paper, we give a precise combinatorial answer in the case of the symmetric group: for any standard Coxeter element, we construct an equivariant bijection between noncrossing partitions under theKreweras complementand nonnesting partitions under a Coxeter‐theoretically natural cyclic action we call theKroweras complement. Our equivariant bijection is the unique bijection that is both equivariant and support‐preserving, and is built using local rules depending on a new definition ofcharmed roots. Charmed roots are determined by the choice of Coxeter element — in the special case of the linear Coxeter element , we recover one of the standard bijections between noncrossing and nonnesting partitions. 
    more » « less
  4. The Frobenius-Perron theory of an endofunctor of a k \Bbbk -linear category (recently introduced in Chen et al. [Algebra Number Theory 13 (2019), pp. 2005–2055]) provides new invariants for abelian and triangulated categories. Here we study Frobenius-Perron type invariants for derived categories of commutative and noncommutative projective schemes. In particular, we calculate the Frobenius-Perron dimension for domestic and tubular weighted projective lines, define Frobenius-Perron generalizations of Calabi-Yau and Kodaira dimensions, and provide examples. We apply this theory to the derived categories associated to certain Artin-Schelter regular and finite-dimensional algebras. 
    more » « less
  5. Abstract We initiate the study of model structures on (categories induced by) lattice posets, a subject we dub homotopical combinatorics . In the case of a finite total order [ n ], we enumerate all model structures, exhibiting a rich combinatorial structure encoded by Shapiro’s Catalan triangle. This is an application of previous work of the authors on the theory of $$N_\infty $$ N ∞ -operads for cyclic groups of prime power order, along with new structural insights concerning extending choices of certain model structures on subcategories of [ n ]. 
    more » « less