skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2247966

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The aim of this note is to show the existence of a large family of Cantorvals arising in the projection description of primitive two-letter substitutions. This provides a common and naturally occurring class of Cantorvals. 
    more » « less
  2. Abstract We prove the nonstationary bounded distortion property for$$C^{1 + \varepsilon }$$ C 1 + ε smooth dynamical systems on multidimensional spaces. The results we obtain are motivated by potential application to study of spectral properties of discrete Schrödinger operators with potentials generated by Sturmian sequences. 
    more » « less
  3. We prove the nonstationary bounded distortion property for smooth dynamical systems on multidimensional spaces. The results we obtain are motivated by potential application to study of spectral properties of discrete Schrödinger operators with potentials generated by Sturmian sequences. 
    more » « less
    Free, publicly-accessible full text available May 19, 2026
  4. We consider a non-stationary sequence of independent random isometries of a compact metrizable space. Assuming that there are no proper closed subsets with deterministic image, we establish a weak-* convergence to the unique invariant under isometries measure, ergodic theorem and large deviation type estimate. We also show that all the results can be carried over to the case of a random walk on a compact metrizable group. In particular, we prove a non-stationary analog of classical Itô–Kawada theorem and give a new alternative proof for the stationary case. 
    more » « less
    Free, publicly-accessible full text available January 27, 2026
  5. We consider discrete Schrödinger operators on ℓ<#comment/> 2 ( Z ) \ell ^2(\mathbb {Z}) with bounded random but not necessarily identically distributed values of the potential. We prove spectral localization (with exponentially decaying eigenfunctions) as well as dynamical localization for this model. An important ingredient of the proof is a non-stationary version of the parametric Furstenberg Theorem on random matrix products, which is also of independent interest. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  6. We consider a nonstationary random walk on a compact metrizable abelian group. Under a classical strict aperiodicity assumption we establish a weak-* convergence to the Haar measure, Ergodic Theorem and Large Deviation Type Estimate. 
    more » « less
  7. Ilyashenko, Yu; Tsfasman, M; Gusein-Zade, S (Ed.)
    We prove a version of pointwise ergodic theorem for non- stationary random dynamical systems. Also, we discuss two specificc examples where the result is applicable: non-stationary iterated function systems and non-stationary random matrix products. 
    more » « less