skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2300124

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The growing necessity for enhanced processing capabilities in edge devices with limited resources has led us to develop effective methods for improving high-performance computing (HPC) applications. In this paper, we introduce LASP (Lightweight Autotuning of Scientific Application Parameters), a novel strategy designed to address the parameter search space challenge in edge devices. Our strategy employs a multi-armed bandit (MAB) technique focused on online exploration and exploitation. Notably, LASP takes a dynamic approach, adapting seamlessly to changing environments. We tested LASP with four HPC applications: Lulesh, Kripke, Clomp, and Hypre. Its lightweight nature makes it particularly well-suited for resource-constrained edge devices. By employing the MAB framework to efficiently navigate the search space, we achieved significant performance improvements while adhering to the stringent computational limits of edge devices. Our experimental results demonstrate the effectiveness of LASP in optimizing parameter search on edge devices. 
    more » « less
    Free, publicly-accessible full text available December 18, 2025
  2. Free, publicly-accessible full text available December 18, 2025
  3. Free, publicly-accessible full text available December 15, 2025
  4. Significant power consumption is one of the major challenges for current and future high-performance computing (HPC) systems. All the while, HPC systems generally remain power underutilized, making them a great candidate for applying power oversubscription to reclaim unused capacity. However, an oversubscribed HPC system may occasionally get overloaded. In this paper, we propose MPR (Market-based Power Reduction), a scalable market-based approach where users actively participate in reducing the HPC system’s power consumption to mitigate overloads. In MPR, HPC users bid to supply, in exchange for incentives, the resource reduction required for handling the overloads. Using several real-world trace-based simulations, we extensively evaluate MPR and show that, by participating in MPR, users always receive more rewards than the cost of performance loss. At the same time, the HPC manager enjoys orders of magnitude more resource gain than her incentive payoff to the users. We also demonstrate the real-world effectiveness of MPR on a prototype system. 
    more » « less
  5. High performance computing (HPC) system runs compute-intensive parallel applications requiring large number of nodes. An HPC system consists of heterogeneous computer architecture nodes, including CPUs, GPUs, field programmable gate arrays (FPGAs), etc. Power capping is a method to improve parallel application performance subject to variable power constraints. In this paper, we propose a parallel application power and performance prediction simulator. We present prediction model to predict application power and performance for unknown power-capping values considering heterogeneous computing architecture. We develop a job scheduling simulator based on parallel discrete-event simulation engine. The simulator includes a power and performance prediction model, as well as a resource allocation model. Based on real-life measurements and trace data, we show the applicability of our proposed prediction model and simulator. 
    more » « less