skip to main content


Title: Market Mechanism-Based User-in-the-Loop Scalable Power Oversubscription for HPC Systems
Significant power consumption is one of the major challenges for current and future high-performance computing (HPC) systems. All the while, HPC systems generally remain power underutilized, making them a great candidate for applying power oversubscription to reclaim unused capacity. However, an oversubscribed HPC system may occasionally get overloaded. In this paper, we propose MPR (Market-based Power Reduction), a scalable market-based approach where users actively participate in reducing the HPC system’s power consumption to mitigate overloads. In MPR, HPC users bid to supply, in exchange for incentives, the resource reduction required for handling the overloads. Using several real-world trace-based simulations, we extensively evaluate MPR and show that, by participating in MPR, users always receive more rewards than the cost of performance loss. At the same time, the HPC manager enjoys orders of magnitude more resource gain than her incentive payoff to the users. We also demonstrate the real-world effectiveness of MPR on a prototype system.  more » « less
Award ID(s):
2300124 2152357
NSF-PAR ID:
10410652
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA)
Page Range / eLocation ID:
485 to 498
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. —Exascale computing enables unprecedented, detailed and coupled scientific simulations which generate data on the order of tens of petabytes. Due to large data volumes, lossy compressors become indispensable as they enable better compression ratios and runtime performance than lossless compressors. Moreover, as (high-performance computing) HPC systems grow larger, they draw power on the scale of tens of megawatts. Data motion is expensive in time and energy. Therefore, optimizing compressor and data I/O power usage is an important step in reducing energy consumption to meet sustainable computing goals and stay within limited power budgets. In this paper, we explore efficient power consumption gains for the SZ and ZFP lossy compressors and data writing on a cloud HPC system while varying the CPU frequency, scientific data sets, and system architecture. Using this power consumption data, we construct a power model for lossy compression and present a tuning methodology that reduces energy overhead of lossy compressors and data writing on HPC systems by 14.3% on average. We apply our model and find 6.5 kJs, or 13%, of savings on average for 512GB I/O. Therefore, utilizing our model results in more energy efficient lossy data compression and I/O. 
    more » « less
  2. High performance computing (HPC) system runs compute-intensive parallel applications requiring large number of nodes. An HPC system consists of heterogeneous computer architecture nodes, including CPUs, GPUs, field programmable gate arrays (FPGAs), etc. Power capping is a method to improve parallel application performance subject to variable power constraints. In this paper, we propose a parallel application power and performance prediction simulator. We present prediction model to predict application power and performance for unknown power-capping values considering heterogeneous computing architecture. We develop a job scheduling simulator based on parallel discrete-event simulation engine. The simulator includes a power and performance prediction model, as well as a resource allocation model. Based on real-life measurements and trace data, we show the applicability of our proposed prediction model and simulator. 
    more » « less
  3. null (Ed.)
    With the recent advances in both machine learning and embedded systems research, the demand to deploy computational models for real-time execution on edge devices has increased substantially. Without deploying computational models on edge devices, the frequent transmission of sensor data to the cloud results in rapid battery draining due to the energy consumption of wireless data transmission. This rapid power dissipation leads to a considerable reduction in the battery lifetime of the system, therefore jeopardizing the real-world utility of smart devices. It is well-established that for difficult machine learning tasks, models with higher performance often require more computation power and thus are not power-efficient choices for deployment on edge devices. However, the trade-offs between performance and power consumption are not well studied. While numerous methods (e.g., model compression) have been developed to obtain an optimal model, these methods focus on improving the efficiency of a single model. In an entirely new direction, we introduce an effective method to find a combination of multiple models that are optimal in terms of power-efficiency and performance by solving an optimization problem in which both performance and power consumption are taken into account. Experimental results demonstrate that on the ImageNet dataset, we can achieve a 20% energy reduction with only 0.3% accuracy drop compared to Squeeze-and-Excitation Networks. Compared to a pruned convolutional neural network for human activity recognition, while consuming 1.7% less energy, our proposed policy achieves 1.3% higher accuracy. 
    more » « less
  4. Cirne, Walfredo ; Rodrigo, Gonzalo P. ; Klusáček, Dalibor (Ed.)
    Datacenter scheduling research often assumes resources as a constant quantity, but increasingly external factors shape capacity dynamically, and beyond the control of an operator. Based on emerging examples, we define a new, open research challenge: the variable capacity resource scheduling problem. The objective here is effective resource utilization despite sudden, perhaps large, changes in the available resources. We define the problem, key dimensions of resource capacity variation, and give specific examples that arise from the natural world (carbon- content, power price, datacenter cooling, and more). Key dimensions of the resource capacity variation include dynamic range, frequency, and structure. With these dimensions, an empirical trace can be character- ized, abstracting it from the many possible important real-world generators of variation. Resource capacity variation can arise from many causes including weather, market prices, renewable energy, carbon emission targets, and internal dynamic power management constraints. We give examples of three dif- ferent sources of variable capacity. Finally, we show variable resource capacity presents new scheduling challenges. We show how variation can cause significant performance degra- dation in existing schedulers, with up to 60% goodput reduction. Further, initial results also show intelligent scheduling techniques can be helpful. These insights show the promise and opportunity for future scheduling studies on resource volatility. 
    more » « less
  5. Cirne, Walfredo ; Rodrigo, Gonzalo P. ; Klusáček, Dalibor (Ed.)
    Datacenter scheduling research often assumes resources as a constant quantity, but increasingly external factors shape capacity dynamically, and beyond the control of an operator. Based on emerging examples, we define a new, open research challenge: the variable capacity resource scheduling problem. The objective here is effective resource utilization despite sudden, perhaps large, changes in the available resources. We define the problem, key dimensions of resource capacity variation, and give specific examples that arise from the natural world (carboncontent, power price, datacenter cooling, and more). Key dimensions of the resource capacity variation include dynamic range, frequency, and structure. With these dimensions, an empirical trace can be characterized, abstracting it from the many possible important real-world generators of variation. Resource capacity variation can arise from many causes including weather, market prices, renewable energy, carbon emission targets, and internal dynamic power management constraints. We give examples of three different sources of variable capacity. Finally, we show variable resource capacity presents new scheduling challenges. We show how variation can cause significant performance degradation in existing schedulers, with up to 60% goodput reduction. Further, initial results also show intelligent scheduling techniques can be helpful. These insights show the promise and opportunity for future scheduling studies on resource volatility. 
    more » « less