skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2300355

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Consider a general-sum N-player linear-quadratic (LQ) game with stochastic dynamics over a finite time horizon. It is known that under some mild assumptions, the Nash equilibrium (NE) strategies for the players can be obtained by a natural policy gradient algorithm. However, the traditional implementation of the algorithm requires the availability of complete state and action information from all agents and may not scale well with the number of agents. Under the assumption of known problem parameters, we present an algorithm that assumes state and action information from only neighboring agents according to the graph describing the dynamic or cost coupling among the agents. We show that the proposed algorithm converges to an 𝜖-neighborhood of the NE where the value of 𝜖 depends on the size of the local neighborhood of agents. 
    more » « less
    Free, publicly-accessible full text available June 30, 2026