skip to main content


Search for: All records

Award ID contains: 2300356

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Free, publicly-accessible full text available August 31, 2025
  3. Kráľovič, Rastislav ; Kučera, Antonín (Ed.)
    Given a set P of n points and a set S of n weighted disks in the plane, the disk coverage problem is to compute a subset of disks of smallest total weight such that the union of the disks in the subset covers all points of P. The problem is NP-hard. In this paper, we consider a line-separable unit-disk version of the problem where all disks have the same radius and their centers are separated from the points of P by a line 𝓁. We present an O(n^{3/2}log² n) time algorithm for the problem. This improves the previously best work of O(n²log n) time. Our result leads to an algorithm of O(n^{7/2}log² n) time for the halfplane coverage problem (i.e., using n weighted halfplanes to cover n points), an improvement over the previous O(n⁴log n) time solution. If all halfplanes are lower ones, our algorithm runs in O(n^{3/2}log² n) time, while the previous best algorithm takes O(n²log n) time. Using duality, the hitting set problems under the same settings can be solved with similar time complexities. 
    more » « less
    Free, publicly-accessible full text available August 23, 2025
  4. Kráľovič, Rastislav ; Kučera, Antonín (Ed.)
    Given a set P of n points and a set S of m disks in the plane, the disk hitting set problem asks for a smallest subset of P such that every disk of S contains at least one point in the subset. The problem is NP-hard. This paper considers a line-constrained version in which all disks have their centers on a line. We present an O(mlog²n+(n+m)log(n+m)) time algorithm for the problem. This improves the previous result of O(m²log m+(n+m)log(n+m)) time for the weighted case of the problem where every point of P has a weight and the objective is to minimize the total weight of the hitting set. Our algorithm also solves a more general line-separable problem with a single intersection property: The points of P and the disk centers are separated by a line 𝓁 and the boundary of every two disks intersect at most once on the side of 𝓁 containing P. 
    more » « less
    Free, publicly-accessible full text available August 23, 2025
  5. Mulzer, Wolfgang ; Phillips, Jeff M (Ed.)
    We consider two restricted cases of the planar dynamic convex hull problem with point insertions and deletions. We assume all updates are performed on a deque (double-ended queue) of points. The first case considers the monotonic path case, where all points are sorted in a given direction, say horizontally left-to-right, and only the leftmost and rightmost points can be inserted and deleted. The second case, which is more general, assumes that the points in the deque constitute a simple path. For both cases, we present solutions supporting deque insertions and deletions in worst-case constant time and standard queries on the convex hull of the points in O(log n) time, where n is the number of points in the current point set. The convex hull of the current point set can be reported in O(h+log n) time, where h is the number of edges of the convex hull. For the 1-sided monotone path case, where updates are only allowed on one side, the reporting time can be reduced to O(h), and queries on the convex hull are supported in O(log h) time. All our time bounds are worst case. In addition, we prove lower bounds that match these time bounds, and thus our results are optimal. 
    more » « less
    Free, publicly-accessible full text available June 6, 2025
  6. Mulzer, Wolfgang ; Phillips, Jeff M (Ed.)
    We study a fundamental problem in Computational Geometry, the planar two-center problem. In this problem, the input is a set S of n points in the plane and the goal is to find two smallest congruent disks whose union contains all points of S. A longstanding open problem has been to obtain an O(nlog n)-time algorithm for planar two-center, matching the Ω(nlog n) lower bound given by Eppstein [SODA'97]. Towards this, researchers have made a lot of efforts over decades. The previous best algorithm, given by Wang [SoCG'20], solves the problem in O(nlog² n) time. In this paper, we present an O(nlog n)-time (deterministic) algorithm for planar two-center, which completely resolves this open problem. 
    more » « less
    Free, publicly-accessible full text available June 6, 2025
  7. Mulzer, Wolfgang ; Phillips, Jeff M (Ed.)
    Given in the plane a set of points and a set of halfplanes, we consider the problem of computing a smallest subset of halfplanes whose union covers all points. In this paper, we present an O(n^{4/3}log^{5/3}nlog^{O(1)}log n)-time algorithm for the problem, where n is the total number of all points and halfplanes. This improves the previously best algorithm of n^{10/3}2^{O(log^*n)} time by roughly a quadratic factor. For the special case where all halfplanes are lower ones, our algorithm runs in O(nlog n) time, which improves the previously best algorithm of n^{4/3}2^{O(log^*n)} time and matches an Ω(nlog n) lower bound. Further, our techniques can be extended to solve a star-shaped polygon coverage problem in O(nlog n) time, which in turn leads to an O(nlog n)-time algorithm for computing an instance-optimal ε-kernel of a set of n points in the plane. Agarwal and Har-Peled presented an O(nklog n)-time algorithm for this problem in SoCG 2023, where k is the size of the ε-kernel; they also raised an open question whether the problem can be solved in O(nlog n) time. Our result thus answers the open question affirmatively. 
    more » « less
    Free, publicly-accessible full text available June 6, 2025
  8. Beyersdorff, Olaf ; Kanté, Mamadou Moustapha ; Kupferman, Orna ; Lokshtanov, Daniel (Ed.)
    Given a set P of n points and a set S of n segments in the plane, we consider the problem of computing for each segment of S its closest point in P. The previously best algorithm solves the problem in n^{4/3}2^{O(log^*n)} time [Bespamyatnikh, 2003] and a lower bound (under a somewhat restricted model) Ω(n^{4/3}) has also been proved. In this paper, we present an O(n^{4/3}) time algorithm and thus solve the problem optimally (under the restricted model). In addition, we also present data structures for solving the online version of the problem, i.e., given a query segment (or a line as a special case), find its closest point in P. Our new results improve the previous work. 
    more » « less
    Free, publicly-accessible full text available March 11, 2025
  9. We study the problem of covering barrier points by mobile sensors. Each sensor is represented by a point in the plane with the same covering range [Formula: see text] so that any point within distance [Formula: see text] from the sensor can be covered by the sensor. Given a set [Formula: see text] of [Formula: see text] points (called “barrier points”) and a set [Formula: see text] of [Formula: see text] points (representing the “sensors”) in the plane, the problem is to move the sensors so that each barrier point is covered by at least one sensor and the maximum movement of all sensors is minimized. The problem is NP-hard. In this paper, we consider two line-constrained variations of the problem and present efficient algorithms that improve the previous work. In the first problem, all sensors are given on a line [Formula: see text] and are required to move on [Formula: see text] only while the barrier points can be anywhere in the plane. We propose an [Formula: see text] time algorithm for the problem. We also consider the weighted case where each sensor has a weight; we give an [Formula: see text] time algorithm for this case. In the second problem, all barrier points are on [Formula: see text] while all sensors are in the plane but are required to move onto [Formula: see text] to cover all barrier points. We also solve the weighted case in [Formula: see text] time.

     
    more » « less
    Free, publicly-accessible full text available February 27, 2025
  10. We present new algorithms for computing many faces in arrangements of lines and segments. Given a set $S$ of $n$ lines (resp., segments) and a set $P$ of $m$ points in the plane, the problem is to compute the faces of the arrangements of $S$ that contain at least one point of $P$. For the line case, we give a deterministic algorithm of $O(m^{2/3}n^{2/3}\log^{2/3} (n/\sqrt{m})+(m+n)\log n)$ time. This improves the previously best deterministic algorithm [Agarwal, 1990] by a factor of $\log^{2.22}n$ and improves the previously best randomized algorithm [Agarwal, Matoušek, and Schwarzkopf, 1998] by a factor of $\log^{1/3}n$ in certain cases (e.g., when $m=\Theta(n)$). For the segment case, we present a deterministic algorithm of $O(n^{2/3}m^{2/3}\log n+\tau(n\alpha^2(n)+n\log m+m)\log n)$ time, where $\tau=\min\{\log m,\log (n/\sqrt{m})\}$ and $\alpha(n)$ is the inverse Ackermann function. This improves the previously best deterministic algorithm [Agarwal, 1990] by a factor of $\log^{2.11}n$ and improves the previously best randomized algorithm [Agarwal, Matoušek, and Schwarzkopf, 1998] by a factor of $\log n$ in certain cases (e.g., when $m=\Theta(n)$). We also give a randomized algorithm of $O(m^{2/3}K^{1/3}\log n+\tau(n\alpha(n)+n\log m+m)\log n\log K)$ expected time, where $K$ is the number of intersections of all segments of $S$. In addition, we consider the query version of the problem, that is, preprocess $S$ to compute the face of the arrangement of $S$ that contains any given query point. We present new results that improve the previous work for both the line and the segment cases. In particulary, for the line case, we build a data structure of $O(n\log n)$ space in $O(n\log n)$ randomized time, so that the face containing the query point can be obtained in $O(\sqrt{n\log n})$ time with high probability (more specifically, the query returns a binary search tree representing the face so that standard binary-search-based queries on the face can be handled in $O(\log n)$ time each and the face itself can be output explicitly in time linear in its size). 
    more » « less