- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Chan, Kenneth (1)
-
Gaddis, Jason (1)
-
Kirkman, E. (1)
-
Won, R. (1)
-
Won, Robert (1)
-
Zhang, J. (1)
-
Zhang, James J (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
Dan Abramovich (1)
-
Zeev Rudnick (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Zeev Rudnick (Ed.)Abstract We introduce the ozone group of a noncommutative algebra $$A$$, defined as the group of automorphisms of $$A$$, which fix every element of its center. In order to initiate the study of ozone groups, we study polynomial identity (PI) skew polynomial rings, which have long proved to be a fertile testing ground in noncommutative algebra. Using the ozone group and other invariants defined herein, we give explicit conditions for the center of a PI skew polynomial ring to be Gorenstein (resp. regular) in low dimension.more » « less
-
Kirkman, E.; Won, R.; Zhang, J. (, Transactions of the American Mathematical Society)Dan Abramovich (Ed.)Let be a noetherian connected graded algebra. We introduce and study homological invariants that are weighted sums of the homological and internal degrees of cochain complexes of graded -modules, providing weighted versions of Castelnuovo–Mumford regularity, Tor-regularity, Artin–Schelter regularity, and concavity. In some cases an invariant (such as Tor-regularity) that is infinite can be replaced with a weighted invariant that is finite, and several homological invariants of complexes can be expressed as weighted homological regularities. We prove a few weighted homological identities some of which unify different classical homological identities and produce interesting new ones.more » « less
An official website of the United States government
