skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2302087

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Zeev Rudnick (Ed.)
    Abstract We introduce the ozone group of a noncommutative algebra $$A$$, defined as the group of automorphisms of $$A$$, which fix every element of its center. In order to initiate the study of ozone groups, we study polynomial identity (PI) skew polynomial rings, which have long proved to be a fertile testing ground in noncommutative algebra. Using the ozone group and other invariants defined herein, we give explicit conditions for the center of a PI skew polynomial ring to be Gorenstein (resp. regular) in low dimension. 
    more » « less
  2. Dan Abramovich (Ed.)
    Let A A be a noetherian connected graded algebra. We introduce and study homological invariants that are weighted sums of the homological and internal degrees of cochain complexes of graded A A -modules, providing weighted versions of Castelnuovo–Mumford regularity, Tor-regularity, Artin–Schelter regularity, and concavity. In some cases an invariant (such as Tor-regularity) that is infinite can be replaced with a weighted invariant that is finite, and several homological invariants of complexes can be expressed as weighted homological regularities. We prove a few weighted homological identities some of which unify different classical homological identities and produce interesting new ones. 
    more » « less