skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ozone Groups and Centers of Skew Polynomial Rings
Abstract We introduce the ozone group of a noncommutative algebra $$A$$, defined as the group of automorphisms of $$A$$, which fix every element of its center. In order to initiate the study of ozone groups, we study polynomial identity (PI) skew polynomial rings, which have long proved to be a fertile testing ground in noncommutative algebra. Using the ozone group and other invariants defined herein, we give explicit conditions for the center of a PI skew polynomial ring to be Gorenstein (resp. regular) in low dimension.  more » « less
Award ID(s):
2302087 2001015
PAR ID:
10506373
Author(s) / Creator(s):
; ; ;
Editor(s):
Zeev Rudnick
Publisher / Repository:
Oxford Univ. Press
Date Published:
Journal Name:
International Mathematics Research Notices
Volume:
2024
Issue:
7
ISSN:
1073-7928
Page Range / eLocation ID:
5689 to 5727
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In pursuit of a noncommutative spectrum functor, we argue that the Heyneman-Sweedler finite dual coalgebra can be viewed as a quantization of the maximal spectrum of a commutative affine algebra, integrating prior perspectives of Takeuchi, Batchelor, Kontsevich-Soibelman, and Le Bruyn. We introduce fully residually finite-dimensional algebras A as those with enough finite-dimensional representations to let A^o act as an appropriate depiction of the noncommutative maximal spectrum of A; importantly, this class includes affine noetherian PI algebras. In the case of prime affine algebras that are module-finite over their center, we describe how the Azumaya locus is represented in the finite dual. This is used to describe the finite dual of quantum planes at roots of unity as an endeavor to visualize the noncommutative space on which these algebras act as functions. Finally, we discuss how a similar analysis can be carried out for other maximal orders over surfaces. 
    more » « less
  2. Abstract We characterize the noncommutative Aleksandrov–Clark measures and the minimal realization formulas of contractive and, in particular, isometric noncommutative rational multipliers of the Fock space. Here, the full Fock space over $$\mathbb {C} ^d$$ is defined as the Hilbert space of square-summable power series in several noncommuting (NC) formal variables, and we interpret this space as the noncommutative and multivariable analogue of the Hardy space of square-summable Taylor series in the complex unit disk. We further obtain analogues of several classical results in Aleksandrov–Clark measure theory for noncommutative and contractive rational multipliers. Noncommutative measures are defined as positive linear functionals on a certain self-adjoint subspace of the Cuntz–Toeplitz algebra, the unital $C^*$ -algebra generated by the left creation operators on the full Fock space. Our results demonstrate that there is a fundamental relationship between NC Hardy space theory, representation theory of the Cuntz–Toeplitz and Cuntz algebras, and the emerging field of noncommutative rational functions. 
    more » « less
  3. We show how the quantum trace map of Bonahon and Wong can be constructed in a natural way using the skein algebra of Muller, which is an extension of the Kauffman bracket skein algebra of surfaces. We also show that the quantum Teichmüller space of a marked surface, defined by Chekhov–Fock (and Kashaev) in an abstract way, can be realized as a concrete subalgebra of the skew field of the skein algebra. 
    more » « less
  4. Abstract This article focuses on the implications of a noncommutative formulation of branch‐cut quantum gravity. Based on a mini‐superspace structure that obeys the noncommutative Poisson algebra, combined with the Wheeler–DeWitt equation and Hořava–Lifshitz quantum gravity, we explore the impact of a scalar field of the inflaton‐type in the evolution of the Universe's wave function. Taking as a starting point the Hořava–Lifshitz action, which depends on the scalar curvature of the branched Universe and its derivatives, the corresponding wave equations are derived and solved. The noncommutative quantum gravity approach adopted preserves the diffeomorphism property of General Relativity, maintaining compatibility with the Arnowitt–Deser–Misner Formalism. In this work we delve deeper into a mini‐superspace of noncommutative variables, incorporating scalar inflaton fields and exploring inflationary models, particularly chaotic and nonchaotic scenarios. We obtained solutions to the wave equations without resorting to numerical approximations. The results indicate that the noncommutative algebraic space captures low and high spacetime scales, driving the exponential acceleration of the Universe. 
    more » « less
  5. We develop a support theory for elementary supergroup schemes, over a field of positive characteristic p ⩾ 3 p\geqslant 3 , starting with a definition of a π \pi -point generalising cyclic shifted subgroups of Carlson for elementary abelian groups and π \pi -points of Friedlander and Pevtsova for finite group schemes. These are defined in terms of maps from the graded algebra k [ t , τ ] / ( t p − τ 2 ) k[t,\tau ]/(t^p-\tau ^2) , where t t has even degree and τ \tau has odd degree. The strength of the theory is demonstrated by classifying the parity change invariant localising subcategories of the stable module category of an elementary supergroup scheme. 
    more » « less