Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Industry 4.0 drives exponential growth in the amount of operational data collected in factories. These data are commonly distributed and stored in different business units or cooperative companies. Such data-rich environments increase the likelihood of cyber attacks, privacy breaches, and security violations. Also, this poses significant challenges on analytical computing on sensitive data that are distributed among different business units. To fill this gap, this article presents a novel privacy-preserving framework to enable federated learning on siloed and encrypted data for smart manufacturing. Specifically, we leverage fully homomorphic encryption (FHE) to allow for computation on ciphertexts and generate encrypted results that, when decrypted, match the results of mathematical operations performed on the plaintexts. Multilayer encryption and privacy protection reduce the likelihood of data breaches while maintaining the prediction performance of analytical models. Experimental results in real-world case studies show that the proposed framework yields superior performance to reduce the risk of cyber attacks and harness siloed data for smart manufacturing.more » « less
-
Abstract The new wave of Industry 4.0 is transforming manufacturing factories into data-rich environments. This provides an unprecedented opportunity to feed large amounts of sensing data collected from the physical factory into the construction of digital twin (DT) in cyberspace. However, little has been done to fully utilize the DT technology to improve the smartness and autonomous levels of small and medium-sized manufacturing factories. Indeed, only a small fraction of small and medium-sized manufacturers (SMMs) has considered implementing DT technology. There is an urgent need to exploit the full potential of data analytics and simulation-enabled DTs for advanced manufacturing. Hence, this paper presents the design and development of DT models for simulation optimization of manufacturing process flows. First, we develop a multi-agent simulation model that describes nonlinear and stochastic dynamics among a network of interactive manufacturing things, including customers, machines, automated guided vehicles (AGVs), queues, and jobs. Second, we propose a statistical metamodeling approach to design sequential computer experiments to optimize the utilization of AGV under uncertainty. Third, we construct two new graph models—job flow graph and AGV traveling graph—to track and monitor the real-time performance of manufacturing jobshops. The proposed simulation-enabled DT approach is evaluated and validated with experimental studies for the representation of a real-world manufacturing factory. Experimental results show that the proposed methodology effectively transforms a manufacturing jobshop into a new generation of DT-enabled smart factories. The sequential design of experiments effectively reduces the computation overhead of expensive simulations while optimally scheduling the AGV to achieve production throughput cost-effectively. This research is strongly promised to help SMMs fully utilize big data and DT technology for gaining competitive advantages in the global marketplace.more » « less
-
The rapid evolution of modern manufacturing systems is driven by the integration of emerging metaverse technologies such as artificial intelligence (AI), digital twin (DT), and different forms of extended reality (XR) like virtual reality (VR), augmented reality (AR), and mixed reality (MR). These advances confront manufacturing workers with complex and evolving environments that demand digital literacy for problem solving in the future workplace. However, manufacturing industry faces a critical shortage of skilled workforce with digital literacy in the world. Further, global pandemic has significantly changed how people work and collaborate digitally and remotely. There is an urgent need to rethink digital platformization and leverage emerging technologies to propel industrial evolution toward human-centered manufacturing metaverse (MfgVerse). This paper presents a forward-looking perspective on the development of MfgVerse, highlighting current efforts in learning factory, cognitive digital twinning, and the new sharing economy of manufacturing-as-a-service (MaaS). MfgVerse is converging into multiplex networks, including a social network of human stakeholders, an interconnected network of manufacturing things or agents (e.g., machines, robots, facilities, material handling systems), a network of digital twins of physical things, as well as auxiliary networks of sales, supply chain, logistics, and remanufacturing systems. We also showcase the design and development of a virtual learning factory for workforce training. Finally, future directions, challenges, and opportunities are discussed for human-centered manufacturing metaverse. We hope this work helps stimulate more comprehensive studies and in-depth research efforts to advance MfgVerse technologies.more » « lessFree, publicly-accessible full text available November 20, 2026
-
The approval of disease-modifying treatments for Alzheimer's disease demands a rethinking of cognitive screening. Drawing on over 180 stakeholder interviews from the NSF National I-Corps program, this perspective highlights barriers in current workflows, from time constraints in primary care to learning effects in long-term care, and presents innovation pathways centered on AI and digital biomarkers. Speech analysis, in particular, offers a scalable and cost-effective screening tool aligned with existing CPT codes. We outline implementation strategies and emphasize the urgent opportunity to align technological innovation with frontline clinical needs to ensure advances translate into meaningful patient and provider benefit.more » « lessFree, publicly-accessible full text available October 14, 2026
-
As manufacturing processes become increasingly complex, maintaining quality and improving efficiency requires mapping of process flows. Mapping process flows, in turn, depends on comprehensive end-to-end data traceability. Such traceability relies on lifecycle data that capture every stage, from raw-material handling to final-product assembly, and provide indispensable insights for process refinement. However, conventional centralized database-based systems for managing these data introduce single points of failure and remain vulnerable to tampering and cyberattacks. As a result, data traceability and authenticity are compromised. Therefore, this research develops a novel blockchain architecture coupled with digital twin (DT) model to secure end-to-end documentation of manufacturing process flows. First, a hierarchical blockchain framework is developed to record production events and ensure comprehensive, tamper-proof records of process activities. Second, the DT model, operating in collaboration with the blockchain tiers, enables real-time alignment between the manufacturing floor and its virtual twin. Third, a unified data representation is designed to transform diverse manufacturing datasets into a homogeneously structured format. Experimental results show that the proposed framework significantly enhances data authenticity while reducing the time required to map manufacturing process flows.more » « lessFree, publicly-accessible full text available August 17, 2026
-
The safe internal transportation of hazardous materials within healthcare facilities is critical to mitigating risks to patients, staff, and visitors. This paper presents a risk-averse path planning framework for autonomously handling hazardous materials in healthcare systems. We model the indoor environment with grid-based obstacle and risk maps, where risk arises from pedestrian flow density and proximity to critical zones. Our novel risk-averse path planning approach integrates risk directly into each transition cost, thereby enabling more robust and secure path selection. We further improve efficiency through (i) a bidirectional variant that cuts search time and (ii) a post-optimization step that minimizes unnecessary heading changes while respecting a risk budget. We evaluated our framework on multiple simulated grid maps and compared it with established methods, measuring path length, average risk, and computational time. The results demonstrate that the proposed framework consistently generates safe and efficient paths while minimizing computational overhead.more » « lessFree, publicly-accessible full text available August 17, 2026
-
Spatiotemporal heterogeneity in demand distribution poses a significant challenge for deployment and coverage control in unmanned aerial vehicle (UAV) tasking. Recent disasters such as the January 2025 Los Angeles wildfires have amplified both the urgency and the scale of such UAV operations. Traditional methods typically assume uniform or static demand, overlooking spatial and temporal variations, ultimately leading to suboptimal deployment of UAVs. To address this shortcoming, this paper introduces Spatiotemporal Coverage for Optimal Unmanned Tasking (SCOUT), a method that begins by initially identifying high-demand areas and subsequently refines UAV locations through an iterative, gradient-based update. The resulting deployment and coverage control minimizes a weighted cost function that integrates spatial distances and demand density, thereby enhancing both resource accessibility and equity for the target areas. Evaluation results show that SCOUT consistently outperforms 3D K-means and weighted Voronoi methods. Implementing a continuous deployment task further underscores the strong potential of the method for dynamic decision support in complex and rapidly changing environments.more » « lessFree, publicly-accessible full text available August 17, 2026
-
The FDA approval of disease-modifying Alzheimer's disease therapies marks a major shift in treatment but exposes a critical challenge: identifying patients during the mild cognitive impairment (MCI) stage when intervention is most effective. Despite early biological changes, most diagnoses occur after significant decline. Drawing from over 180 stakeholder interviews conducted through the NSF I-Corps program reveal major detection gaps across primary care, specialty access, and available tools. This commentary highlights the consequences of delayed diagnosis and proposes translational strategies to align early detection with therapeutic opportunity, positioning MCI as the critical window for Alzheimer's disease intervention.more » « lessFree, publicly-accessible full text available August 4, 2026
-
Modern manufacturing is increasingly challenged by larger product varieties, shorter product life cycles, and unexpected production disruptions. Examples of such disruptions include market uncertainty, machine failures, and delivery backlogs. These disturbances are intricately interrelated, exacerbating system complexity and necessitating the adaptive organization (or re-configuration) of machine networks within factory layouts. However, traditional factory layouts are often stationary and lack the flexibility to rearrange or adjust machine networks in response to volatile markets and unexpected disruptions. Also, layout planning typically emphasizes offline design and configuration of machine networks and resources within a facility to optimize process flow and production performance, but tends to overlook the self-organizing arrangement of machines in a dynamic environment. Therefore, to address this gap, this paper presents a novel Self-organizing Machine Network (SOMN) model that optimizes the spatial layout of machine positions and queue configurations, thereby enhancing the manufacturing system’s resilience to unexpected disruptions. First, as opposed to traditional fixed machine positions, we design intelligent machine agents that communicate and autonomously reorganize in real-time to optimize key performance indicators (KPIs). Second, we develop the machine network model in a Digital Twin (DT) environment, facilitating cyber-physical interactions and capturing variations of state-action space in machine agents. Third, multi-agent reinforcement learning (MARL) algorithms empower these networked machine agents to adapt layouts and minimize the impact of disruptions on production performance. We evaluate and validate the proposed SOMN model through computer experiments, benchmarking it against random search and simulated annealing approaches. Experimental results show that the SOMN model significantly improves material handling efficiency, reduces computational overhead, and maintains productivity in different scenarios of manufacturing disruptions. This research holds strong potential for enabling distributed intelligence within self-organizing machine networks for resilient manufacturing.more » « lessFree, publicly-accessible full text available June 23, 2026
-
Rapid advances in Digital Twin (DT) provide an unprecedented opportunity to derive data-enabled intelligence for smart manufacturing. However, traditional DT is more concerned about real-time data streaming, dashboard visualization, and predictive analytics, but focuses less on multi-agent intelligence. This limitation hampers the development of agentic intelligence for decentralized decision making in complex manufacturing environments. Therefore, this paper presents a Cognitive Digital Twin (CDT) approach for multi-objective production scheduling through decentralized, collaborative multi-agent learning. First, we propose to construct models of heterogeneous agents (e.g., machines, jobs, automated guided vehicles, and automated storage and retrieval systems) that interact with physical and digital twins. Second, multi-objective optimization is embedded in CDT to align production schedules with diverse and often conflicting objectives such as throughput, task transition efficiency, and workload balance. Third, we develop a multi-agent learning approach to enable decentralized decision making in response to unexpected disruptions and dynamic demands. Each agent operates independently and collaboratively with cognitive capabilities, including perception, learning, and reasoning, to optimize the individual agentic objective while contributing to overarching system-wide goals. Finally, the proposed CDT is evaluated and validated with experimental studies in a learning factory environment. Experimental results demonstrate that CDT improves operational performance in terms of task allocation, resource utilization, and system resilience compared to traditional centralized approaches. This initial study of CDT highlights the potential to bring multi-agent cognitive intelligence into next-generation smart manufacturing.more » « lessFree, publicly-accessible full text available June 19, 2026
An official website of the United States government
