Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Understanding the spatial dynamics of bike-sharing usage is critical for effective urban planning and mobility resource management. In this study, we propose an interpretable deep learning approach to uncover spatial relationships embedded in bike-sharing activities. Specifically, we develop a spatially-adapted SHapley Additive exPlanations (SHAP)-based method to quantify the spatial dependencies between locations in bike-sharing activities and apply it to interpret the predictions of a bike-sharing model. Extensive experiments upon Citi Bike data from New York City in December 2023 reveal that spatial influence does not strictly follow geographic proximity and is anisotropic. Additionally, non-member users exhibit weaker spatial dependencies in their bike usage behavior, resulting in lower short-term predictability compared to member users. Our studies shed deep insights into the spatial dynamics of bike-sharing systems and provide guidance for more effective service deployment and system design.more » « lessFree, publicly-accessible full text available November 3, 2026
-
Free, publicly-accessible full text available October 1, 2026
-
Allocating mobility resources (e.g., shared bikes/e-scooters, ridesharing vehicles) is crucial for rebalancing the mobility demand and supply in the urban environments. We propose in this work a novel multi-agent reinforcement learning named Hierarchical Adaptive Grouping-based Parameter Sharing (HAG-PS) for dynamic mobility resource allocation. HAG-PS aims to address two important research challenges regarding multi-agent reinforcement learning for mobility resource allocation: (1) how to dynamically and adaptively share the mobility resource allocation policy (i.e., how to distribute mobility resources) across agents (i.e., representing the regional coordinators of mobility resources); and (2) how to achieve memory-efficient parameter sharing in an urban-scale setting. To address the above challenges, we have provided following novel designs within HAG-PS. To enable dynamic and adaptive parameter sharing, we have designed a hierarchical approach that consists of global and local information of the mobility resource states (e.g., distribution of mobility resources). We have developed an adaptive agent grouping approach in order to split or merge the groups of agents based on their relative closeness of encoded trajectories (i.e., states, actions, and rewards). We have designed a learnable identity (ID) embeddings to enable agent specialization beyond simple parameter copy. We have performed extensive experimental studies based on real-world NYC bike sharing data (a total of more than 1.2 million trips), and demonstrated the superior performance (e.g., improved bike availability) of HAG-PS compared with other baseline approaches.more » « lessFree, publicly-accessible full text available August 3, 2026
-
The increasing popularity of outdoor recreational activities (such as hiking and biking) has boosted the demand for a conversational AI system to provide informative and personalized suggestion on outdoor trails. Challenges arise in response to (1) how to provide accurate outdoor trail information via conversational AI; and (2) how to enable usable and efficient recommendation services. To address above, this paper discusses the preliminary and practical lessons learned from developing Judy, an outdoor trail recommendation chatbot based on the large language model (LLM) with retrieval augmented generation (RAG). To gain concrete system insights, we have performed case studies with the outdoor trails in Connecticut (CT), US. We have conducted web-based data collection, outdoor trail data management, and LLM model performance studies on the RAG-based recommendation. Our experimental results have demonstrated the accuracy, effectiveness, and usability of Judy in recommending outdoor trails based on the LLM with RAG.more » « lessFree, publicly-accessible full text available August 3, 2026
-
Allocating mobility resources (e.g., shared bikes/e-scooters, ridesharing vehicles) is crucial for rebalancing the mobility demand and supply in the urban environments. We propose in this work a novel multi-agent reinforcement learning named Hierarchical Adaptive Grouping-based Parameter Sharing (HAG-PS) for dynamic mobility resource allocation. HAG-PS aims to address two important research challenges regarding multi-agent reinforcement learning for mobility resource allocation: (1) how to dynamically and adaptively share the mobility resource allocation policy (i.e., how to distribute mobility resources) across agents (i.e., representing the regional coordinators of mobility resources); and (2) how to achieve memory-efficient parameter sharing in an urban-scale setting. To address the above challenges, we have provided following novel designs within HAG-PS. To enable dynamic and adaptive parameter sharing, we have designed a hierarchical approach that consists of global and local information of the mobility resource states (e.g., distribution of mobility resources). We have developed an adaptive agent grouping approach in order to split or merge the groups of agents based on their relative closeness of encoded trajectories (i.e., states, actions, and rewards). We have designed a learnable identity (ID) embeddings to enable agent specialization beyond simple parameter copy. We have performed extensive experimental studies based on real-world NYC bike sharing data (a total of more than 1.2 million trips), and demonstrated the superior performance (e.g., improved bike availability) of HAG-PS compared with other baseline approaches.more » « lessFree, publicly-accessible full text available August 3, 2026
-
Amid accelerating climate change, climate-related hazards—such as floods, wildfires, hurricanes, and sea-level rise—increasingly drive land transformations and pose growing risks to housing markets by affecting property valuations, insurance availability, mortgage performance, and broader financial stability. This review synthesizes recent progress in two distinct domains and their linkage: (1) assessing climate-related financial risks in housing markets, and (2) applying AI-driven remote sensing for hazard detection and land transformation monitoring. While both areas have advanced significantly, important limitations remain. Existing housing finance studies often rely on static models and coarse spatial data, lacking integration with real-time environmental information, thereby reducing their predictive power and policy relevance. In parallel, remote sensing studies using AI primarily focus on detecting physical hazards and land surface changes, yet rarely connect these spatial transformations to financial outcomes. To address these gaps, this review proposes an integrative framework that combines AI-enhanced remote sensing technologies with financial econometric modeling to improve the accuracy, timeliness, and policy relevance of climate-related risk assessment in housing markets. By bridging environmental hazard data—including land-based indicators of exposure and damage—with financial indicators, the framework enables more granular, dynamic, and equitable assessments than conventional approaches. Nonetheless, its implementation faces technical and institutional barriers, including spatial and temporal mismatches between datasets, fragmented regulatory and behavioral inputs, and the limitations of current single-task AI models, which often lack transparency. Overcoming these challenges will require innovation in AI modeling, improved data-sharing infrastructures, and stronger cross-disciplinary collaboration.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Accurate prediction of citywide crowd activity levels (CALs),i.e., the numbers of participants of citywide crowd activities under different venue categories at certain time and locations, is essential for the city management, the personal service applications, and the entrepreneurs in commercial strategic planning. Existing studies have not thoroughly taken into account the complex spatial and temporal interactions among different categories of CALs and their extreme occurrences, leading to lowered adaptivity and accuracy of their models. To address above concerns, we have proposedIE-CALP, a novel spatio-temporalInteractive attention-based andExtreme-aware model forCrowdActivityLevelPrediction. The tasks ofIE-CALPconsist of(a)forecasting the spatial distributions of various CALs at different city regions (spatial CALs), and(b)predicting the number of participants per category of the CALs (categorical CALs). To realize above, we have designed a novel spatial CAL-POI interaction-attentive learning component inIE-CALPto model the spatial interactions across different CAL categories, as well as those among the spatial urban regions and CALs. In addition,IE-CALPincorporate the multi-level trends (e.g., daily and weekly levels of temporal granularity) of CALs through a multi-level temporal feature learning component. Furthermore, to enhance the model adaptivity to extreme CALs (e.g., during extreme urban events or weather conditions), we further take into account theextreme value theoryand model the impacts of historical CALs upon the occurrences of extreme CALs. Extensive experiments upon a total of 738,715 CAL records and 246,660 POIs in New York City (NYC), Los Angeles (LA), and Tokyo have further validated the accuracy, adaptivity, and effectiveness ofIE-CALP’s interaction-attentive and extreme-aware CAL predictions.more » « less
An official website of the United States government

Full Text Available