Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Conventional multiply-accumulate (MAC) operations have long dominated computation time for deep neural networks (DNNs), especially convolutional neural networks (CNNs). Recently, product quantization (PQ) has been applied to these workloads, replacing MACs with memory lookups to pre-computed dot products. To better understand the efficiency tradeoffs of product-quantized DNNs (PQ-DNNs), we create a custom hardware accelerator to parallelize and accelerate nearest-neighbor search and dot-product lookups. Additionally, we perform an empirical study to investigate the efficiency–accuracy tradeoffs of different PQ parameterizations and training methods. We identify PQ configurations that improve performance-per-area for ResNet20 by up to 3.1×, even when compared to a highly optimized conventional DNN accelerator, with similar improvements on two additional compact DNNs. When comparing to recent PQ solutions, we outperform prior work by 4× in terms of performance-per-area with a 0.6% accuracy degradation. Finally, we reduce the bitwidth of PQ operations to investigate the impact on both hardware efficiency and accuracy. With only 2–6-bit precision on three compact DNNs, we were able to maintain DNN accuracy eliminating the need for DSPs.more » « lessFree, publicly-accessible full text available March 31, 2026
-
Free, publicly-accessible full text available November 2, 2025
An official website of the United States government

Full Text Available