skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2304919

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A series of Co2+/3+and Fe2+/3+complexes is prepared using three variants of a hexadentate tris(imidazole)triazacyclononane ligand bearing different 4‐alkyl substituents on the imidazole rings. The steric bulk of the alkyl substituent (R=H,iPr, ortBu) alters the preferred size of the ligand binding cavity by inhibiting close approach of the imidazole donors with bulky substituents. The resulting changes in geometry, redox potentials, spin states, and optical properties are catalogued across the series, demonstrating redox potential tuning over at least 670 mV as well as spin state switching based on the choice of substituent. The ligand field splitting of the complexes decreases with increasing bulk of the substituents. Tuning of the steric bulk of the substituents in these positions therefore allows for the electronic properties of the complexes to be fine‐tuned in a manner orthogonal to the donor properties of the substituents. 
    more » « less
    Free, publicly-accessible full text available April 9, 2026
  2. Copper-mediated methodologies for the arylation of bis-azolium salts and bis-azoles are efficient pathways to access symmetrical and unsymmetrical N-heterocyclic carbene precursors. The arylation of bis-azolium salts with various aryl halides was achieved in moderate yields to furnish numerous C2-arylated bis-azolium salts. Access of C2-arylated bis-azolium salts from bis-azoles was also achieved in a single pot domino reaction via the use of iodonium salts as embedded electrophiles. The latter methodology utilizes the aryl iodide byproduct from the N-arylation step for the C–H activation step to mitigate waste and the need to recycle. We also demonstrated the use of these azolium salts in metalation and found success in obtaining metal complexes containing abnormal N-heterocyclic carbenes. 
    more » « less
    Free, publicly-accessible full text available January 15, 2027
  3. Biofilm-related infections are associated with high mortality and morbidity combined with increased treatment costs. Traditional antibiotics are becoming less effective due to the emergence of drug-resistant bacterial strains. The need to treat biofilms on medical implants is particularly acute, and one persistent challenge is selectively directing nanoparticles to the biofilm site. Here, we present a protein-based functionalization strategy that targets the extracellular matrix of biofilms. The engineered protein combines the Staphylococcus epidermidis autolysin R2ab domain with a gold-binding GB3 domain, directing nanoparticles specifically to bacterial cell wall components (lipoteichoic acid and wall teichoic acid) that are absent in mammalian tissues. This fusion protein is applied to a gold nanoparticle (AuNP) core, along with elastin-like polypeptides (ELPs), which generate a robust photothermal response. The engineered particles exhibit exceptional biocompatibility, including low protein corona formation, minimal macrophage uptake, and hemocompatibility, while maintaining selective biofilm targeting. The photothermal conversion can be modulated by changing the ELP transition temperature, and the functionalized AuNPs strongly interact with biofilms under static and flow conditions without significantly binding to serum-coated surfaces. Near-infrared laser irradiation resulted in a 10,000-fold improvement in killing efficiency compared to untreated controls (p < 0.0001). The targeting strategy utilized here represents a versatile approach to targeting drug-resistant infections and could be readily expanded to other bacterial pathogens and anti-biofilm nanoparticle platforms. 
    more » « less
    Free, publicly-accessible full text available November 13, 2026
  4. When nanoparticles and nanoplastics enter biological fluids, their surfaces are rapidly coated with proteins, forming a corona that governs biological responses. However, understanding protein- surface interaction energetics remains a significant challenge. Here, we examine how protein charge distribution affects adsorption to polystyrene nanoparticles (PSNPs) by generating a series of lysine-to-alanine variants of the GB3 protein. Using isothermal titration calorimetry (ITC), we found that the K19A variant binds most strongly to both non-functionalized and carboxylate- functionalized PSNPs. ITC thermograms indicate that K19A forms a stable monolayer, while other variants exhibit multilayer adsorption. We hypothesize that removing lysine at position 19 creates a flatter, more neutral interaction surface that promotes efficient initial binding. Fluorescence denaturation experiments show that PSNPs destabilize GB3 protein variants, and binding correlates strongly with protein unfolding (r = 0.82, p < 0.01 for COOH-PSNPs and r = 0.76, p < 0.03 for non-functionalized PSNPs). These results reveal how protein stability and charge distribution shape adsorption thermodynamics, offering a framework for predicting protein-surface interactions. 
    more » « less
    Free, publicly-accessible full text available August 22, 2026
  5. Free, publicly-accessible full text available July 29, 2026