skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 9, 2026

Title: Steric Tuning of Spin States and Redox Potentials in Tris(imidazole) Triazacyclononane Complexes of Fe 2+/3+ and Co 2+/3+
Abstract A series of Co2+/3+and Fe2+/3+complexes is prepared using three variants of a hexadentate tris(imidazole)triazacyclononane ligand bearing different 4‐alkyl substituents on the imidazole rings. The steric bulk of the alkyl substituent (R=H,iPr, ortBu) alters the preferred size of the ligand binding cavity by inhibiting close approach of the imidazole donors with bulky substituents. The resulting changes in geometry, redox potentials, spin states, and optical properties are catalogued across the series, demonstrating redox potential tuning over at least 670 mV as well as spin state switching based on the choice of substituent. The ligand field splitting of the complexes decreases with increasing bulk of the substituents. Tuning of the steric bulk of the substituents in these positions therefore allows for the electronic properties of the complexes to be fine‐tuned in a manner orthogonal to the donor properties of the substituents.  more » « less
Award ID(s):
2304919
PAR ID:
10582541
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
European Journal of Inoganic Chemistry
Date Published:
Journal Name:
European Journal of Inorganic Chemistry
Volume:
28
Issue:
11
ISSN:
1434-1948
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Herein, we report four new chiral 1,4,7‐triazacyclononane (TACN) derivatives and their corresponding nickel(II) chloride complexes. All TACN ligands are bearing one chiral N‐substituent and two alkyl (methyl ortert‐butyl) N‐substituents, and we have developed a new synthetic method for the dimethyl‐substituted TACN derivative, in order to prevent the rotational isomers that hinder the cyclization reaction. The nickel complexes change their coordination geometry significantly depending on the steric bulk of the N‐alkyl substituents, from a dinuclear tris(μ‐chloro)dinickel complex to mononuclear Ni‐dichloride and Ni‐chloride complexes. These complexes were then employed in the alkyl‐alkyl Kumada cross‐coupling reaction and revealed that the more sterically hindered ligands produced more homocoupled product rather than the cross‐coupled product, while the mononuclear Ni‐dichloride complex exhibited significantly lower catalytic activity. These chiral complexes were also employed in enantioconvergent cross‐coupling reactions as well, to afford significant enantioenrichment. Overall, the least sterically hindered Ni complex yields the best yields in the alkyl‐alkyl Kumada cross‐coupling reaction among the four complexes investigated, as well as the highest enantioselectivity. 
    more » « less
  2. Two‐coordinate carbene Cu(Ι) amide complexes with sterically bulky groups such as the diisopropyl phenyl (dipp) on the carbenes have been shown to have comparable performance to the phosphorescent emitters bearing heavy atoms such as iridium and platinum. These bulky groups enforce a coplanar molecular structure and suppress the nonradiative decay rates. Here, three different two‐coordinate Cu(Ι) complexes were investigated that bear a common thiazole carbene, 3‐(2,6‐diisopropylphenyl)‐4,5‐dimethylthiazol‐2‐ylidene, with only a single dipp group, and carbazolyl ligands with substituents of varying steric bulkorthoto N. These substituents have a negligible impact on luminescence energies of the complexes but serve to modulate the rotation barriers along the metal–ligand coordinate bond. The geometric arrangement of ligands (syn‐ oranti‐conformer) in complexes with alkyl substituents were found to differ, beingsynin the solid state versusantiin solution as revealed by crystallographic analysis and nuclear magnetic resonance spectroscopy. In addition, calculations were performed to determine potential energy surfaces for different conformations of the three complexes to provide a theoretical evaluation of rotation barriers around the metal–ligand bond axis. The relationship between rotation barriers and photophysical properties demonstrate that rates for nonradiative decay decrease with increasing bulk of the substituents on the carbazolyl ligand. 
    more » « less
  3. Abstract Coordination complexes of general formulatrans‐[MX2(R2ECH2CH2ER2)2] (MII=Ti, V, Cr, Mn; E=N or P; R=alkyl or aryl) are a cornerstone of coordination and organometallic chemistry. We investigate the electronic properties of two such complexes,trans‐[VCl2(tmeda)2] andtrans‐[VCl2(dmpe)2], which thus representtrans‐[MX2(R2ECH2CH2ER2)2] where M=V, X=Cl, R=Me and E=N (tmeda) and P (dmpe). These VIIcomplexes haveS=3/2 ground states, as expected for octahedral d3. Their tetragonal distortion leads to zero‐field splitting (zfs) that is modest in magnitude (D≈0.3 cm−1) relative to analogousS=1 TiIIand CrIIcomplexes. This parameter was determined from conventional EPR spectroscopy, but more effectively from high‐frequency and ‐field EPR (HFEPR) that determined the sign ofDas negative for the diamine complex, but positive for the diphosphine, which information had not been known for anytrans‐[VX2(R2ECH2CH2ER2)2] systems. The ligand‐field parameters oftrans‐[VCl2(tmeda)2] andtrans‐[VCl2(dmpe)2] are obtained using both classical theory andab initioquantum chemical theory. The results shed light not only on the electronic structure of VIIin this environment, but also on differences between N and P donor ligands, a key comparison in coordination chemistry. 
    more » « less
  4. Abstract A new method to synthesize complexes of the type [(CNC)RuII(NN)L]n+has been introduced, where CNC is a tridentate pincer composed of two (benz)imidazole derived NHC rings and a pyridyl ring, NN is a bidentate aromatic diimine ligand, L=bromide or acetonitrile, and n=1 or 2. Following this new method a series of six new complexes has been synthesized and characterized by spectroscopic, analytic, crystallographic, and computational methods. Their electrochemical properties have been studiedviacyclic voltammetry under both N2and CO2atmospheres. Photocatalytic reduction of CO2to CO was performed using these complexes both in the presence (sensitized) and absence (self‐sensitized) of an external photosensitizer. This study evaluates the effect of different CNC, NN, and L ligands in sensitized and self‐sensitized photocatalysis. Catalysts bearing the benzimidazole derived CNC pincer show much better activity for both sensitized and self‐sensitized photocatalysis as compared to catalysts bearing the imidazole derived CNC pincer. Furthermore, self‐sensitized photocatalysis requires a diimine ligand for CO2reduction with catalyst2ACNbeing the most active catalyst in this series with TON=85 and TOF=22 h−1with an electron donating 4,4′‐dimethyl‐2,2′‐bipyridyl (dmb) ligand and a benzimidazole derived CNC pincer. 
    more » « less
  5. Synthetic control of the influence of steric and electronic factors on the ultrafast (picosecond) isomerization of penta-coordinate ruthenium dithietene complexes (Ru((CF 3 ) 2 C 2 S 2 )(CO)(L) 2 , where L = a monodentate phosphine ligand) is reported. Seven new ruthenium dithietene complexes were prepared and characterized by single crystal X-ray diffraction. The complexes are all square pyramidal and differ only in the axial vs. equatorial coordination of the carbonyl ligand. Fourier Transform Infrared (FTIR) spectroscopy was used to study the ν (CO) bandshapes of the complexes in solution, and these reveal rapid exchange between two or three isomers of each complex. Isomerization is proposed to follow a Berry psuedorotation-like mechanism where a metastable, trigonal bipyramidal (TBP) intermediate is observed spectroscopically. Electronic tuning of the phosphine ligands L = PPh 3 , P(( p -Me)Ph) 3 , (( p -Cl)Ph) 3 , at constant cone angle is found to have little effect on the kinetics or thermodynamic stabilities of the axial, equatorial and TBP isomers of the differently substituted complexes. Steric tuning of the phosphine ligands over a range of phosphine cone angles (135 < θ < 165°) has a profound impact on the isomerization process, and in the limit of greatest steric bulk, the axial isomer is not observable. Temperature dependence of the FTIR spectra was used to obtain the relative thermodynamic stabilities of the different isomers of each of the seven ruthenium dithietene complexes. This study details how ligand steric effects can be used to direct the solution state dynamics on the picosecond time scale of discrete isomers energetically separated by <2.2 kcal mol −1 . This work provides the most detailed description to date of ultrafast isomerization in the ground states of transition metal complexes. 
    more » « less