skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2305425

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Measurements of the accelerations of stars enabled by time-series extreme-precision spectroscopic observations, pulsar timing, and eclipsing binary stars in the solar neighborhood offer insights into the mass distribution of the Milky Way that do not rely on traditional equilibrium modeling. Given the measured accelerations, we can determine a total mass density and infer the amount of dark matter (DM) by accounting for the mass in stars, gas, and dust. Leveraging FIRE-2 simulations of Milky Way–mass galaxies we compare vertical acceleration profiles between cold DM (CDM) and self-interacting DM (SIDM) with a constant cross section of 1 cm2g−1across three halos with diverse assembly histories. Notably, significant asymmetries in vertical acceleration profiles near the midplane at fixed radii are observed in both CDM and SIDM, particularly in halos recently affected by mergers with satellites of Sagittarius/SMC-like masses or greater. These asymmetries offer a unique window into exploring the merger history of a galaxy. We show that SIDM halos manifest a more oblate shape and consistently exhibit higher local stellar and DM densities and steeper vertical acceleration gradients, up to 10%–30% steeper near the solar neighborhood. However, similar magnitude changes can arise from azimuthal variations in the baryonic components at a fixed radius and external influences like mergers, making it difficult to distinguish between CDM and SIDM using acceleration measurements in a single galaxy. 
    more » « less
  2. Abstract The shape and orientation of dark matter (DM) halos are sensitive to the microphysics of the DM particles, yet in many mass models, the symmetry axes of the Milky Way’s DM halo are often assumed to be aligned with the symmetry axes of the stellar disk. This is well motivated for the inner DM halo, but not for the outer halo. We use zoomed-in cosmological baryonic simulations from the Latte suite of FIRE-2 Milky Way–mass galaxies to explore the evolution of the DM halo’s orientation with radius and time, with or without a major merger with a Large Magellanic Cloud analog, and when varying the DM model. In three of the four cold DM halos we examine, the orientation of the halo minor axis diverges from the stellar disk vector by more than 20° beyond about 30 galactocentric kpc, reaching a maximum of 30°–90°, depending on the individual halo’s formation history. In identical simulations using a model of self-interacting DM withσ= 1 cm2g−1, the halo remains aligned with the stellar disk out to ∼200–400 kpc. Interactions with massive satellites (M≳ 4 × 1010Mat pericenter;M≳ 3.3 × 1010Mat infall) affect the orientation of the halo significantly, aligning the halo’s major axis with the satellite galaxy from the disk to the virial radius. The relative orientation of the halo and disk beyond 30 kpc is a potential diagnostic of self-interacting DM, if the effects of massive satellites can be accounted for. 
    more » « less
  3. ABSTRACT We present a model for the formation of the Magellanic Stream (MS) due to ram pressure stripping. We model the history of the Small and Large Magellanic Clouds in the recent cosmological past in a static Milky Way (MW) potential with diffuse halo gas, using observationally motivated orbits for the Magellanic Clouds derived from HST proper motions within the potential of the MW. This model is able to reproduce the trailing arm but does not reproduce the leading arm feature, which is common for models of the stream formation that include ram pressure stripping effects. While our model does not outperform other models in terms of matching the observable quantities in the MS, it is close enough for our ultimate goal – using the MS to estimate the MW mass. By analysing our grid of models, we find that there is a direct correlation between the observed stream length in our simulations and the mass of the MW. For the observed MS length, the inferred MW mass is 1.5 ± 0.32 × 1012$$\, \mathrm{M}_\odot$$, which agrees closely with other independent measures of the MW mass. We also discuss the MS in the context of H i streams in galaxy clusters, and find that the MS lies on the low-mass end of a continuum from Hickson groups to the Virgo cluster. As a tracer of the dynamical mass in the outer halo, the MS is a particularly valuable probe of the MW’s potential. 
    more » « less
  4. ABSTRACT We show that smoothed particle hydrodynamics (SPH) simulations of dwarf galaxies interacting with a Milky Way-like disc produce moving groups in the simulated stellar disc. We analyse three different simulations: one that includes dwarf galaxies that mimic the Large Magellanic Cloud, Small Magellanic Cloud, and the Sagittarius dwarf spheroidal; another with a dwarf galaxy that orbits nearly in the plane of the Milky Way disc; and a null case that does not include a dwarf galaxy interaction. We present a new algorithm to find large moving groups in the VR, Vϕ plane in an automated fashion that allows us to compare velocity substructure in different simulations, at different locations, and at different times. We find that there are significantly more moving groups formed in the interacting simulations than in the isolated simulation. A number of dwarf galaxies are known to orbit the Milky Way, with at least one known to have had a close pericentre approach. Our analysis of simulations here indicates that dwarf galaxies like those orbiting our Galaxy produce large moving groups in the disc. Our analysis also suggests that some of the moving groups in the Milky Way may have formed due to dynamical interactions with perturbing dwarf satellites. The groups identified in the simulations by our algorithm have similar properties to those found in the Milky Way, including similar fractions of the total stellar population included in the groups, as well as similar average velocities and velocity dispersions. 
    more » « less