skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamically produced moving groups in interacting simulations
ABSTRACT We show that smoothed particle hydrodynamics (SPH) simulations of dwarf galaxies interacting with a Milky Way-like disc produce moving groups in the simulated stellar disc. We analyse three different simulations: one that includes dwarf galaxies that mimic the Large Magellanic Cloud, Small Magellanic Cloud, and the Sagittarius dwarf spheroidal; another with a dwarf galaxy that orbits nearly in the plane of the Milky Way disc; and a null case that does not include a dwarf galaxy interaction. We present a new algorithm to find large moving groups in the VR, Vϕ plane in an automated fashion that allows us to compare velocity substructure in different simulations, at different locations, and at different times. We find that there are significantly more moving groups formed in the interacting simulations than in the isolated simulation. A number of dwarf galaxies are known to orbit the Milky Way, with at least one known to have had a close pericentre approach. Our analysis of simulations here indicates that dwarf galaxies like those orbiting our Galaxy produce large moving groups in the disc. Our analysis also suggests that some of the moving groups in the Milky Way may have formed due to dynamical interactions with perturbing dwarf satellites. The groups identified in the simulations by our algorithm have similar properties to those found in the Milky Way, including similar fractions of the total stellar population included in the groups, as well as similar average velocities and velocity dispersions.  more » « less
Award ID(s):
2009574 1908653 2305425
PAR ID:
10282203
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Monthly Notices of the Royal Astronomical Society
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
505
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
2561 to 2574
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT We investigate thin and thick stellar disc formation in Milky Way-mass galaxies using 12 FIRE-2 cosmological zoom-in simulations. All simulated galaxies experience an early period of bursty star formation that transitions to a late-time steady phase of near-constant star formation. Stars formed during the late-time steady phase have more circular orbits and thin-disc-like morphology at z = 0, while stars born during the bursty phase have more radial orbits and thick-disc structure. The median age of thick-disc stars at z = 0 correlates strongly with this transition time. We also find that galaxies with an earlier transition from bursty to steady star formation have a higher thin-disc fractions at z = 0. Three of our systems have minor mergers with Large Magellanic Cloud-size satellites during the thin-disc phase. These mergers trigger short starbursts but do not destroy the thin disc nor alter broad trends between the star formation transition time and thin/thick-disc properties. If our simulations are representative of the Universe, then stellar archaeological studies of the Milky Way (or M31) provide a window into past star formation modes in the Galaxy. Current age estimates of the Galactic thick disc would suggest that the Milky Way transitioned from bursty to steady phase ∼6.5 Gyr ago; prior to that time the Milky Way likely lacked a recognizable thin disc. 
    more » « less
  2. null (Ed.)
    ABSTRACT We present the hestia simulation suite: High-resolutions Environmental Simulations of The Immediate Area, a set of cosmological simulations of the Local Group. Initial conditions constrained by the observed peculiar velocity of nearby galaxies are employed to accurately simulate the local cosmography. Halo pairs that resemble the Local Group are found in low resolutions constrained, dark matter only simulations, and selected for higher resolution magneto hydrodynamic simulation using the arepo code. Baryonic physics follows the auriga model of galaxy formation. The simulations contain a high-resolution region of 3–5 Mpc in radius from the Local Group mid-point embedded in the correct cosmographic landscape. Within this region, a simulated Local Group consisting of a Milky Way and Andromeda like galaxy forms, whose description is in excellent agreement with observations. The simulated Local Group galaxies resemble the Milky Way and Andromeda in terms of their halo mass, mass ratio, stellar disc mass, morphology separation, relative velocity, rotation curves, bulge-disc morphology, satellite galaxy stellar mass function, satellite radial distribution, and in some cases, the presence of a Magellanic cloud like object. Because these simulations properly model the Local Group in their cosmographic context, they provide a testing ground for questions where environment is thought to play an important role. 
    more » « less
  3. null (Ed.)
    ABSTRACT We present the first satellite system of the Large Binocular Telescope Satellites Of Nearby Galaxies Survey (LBT-SONG), a survey to characterize the close satellite populations of Large Magellanic Cloud to Milky-Way-mass, star-forming galaxies in the Local Volume. In this paper, we describe our unresolved diffuse satellite finding and completeness measurement methodology and apply this framework to NGC 628, an isolated galaxy with ∼1/4 the stellar mass of the Milky Way. We present two new dwarf satellite galaxy candidates: NGC 628 dwA, and dwB with MV = −12.2 and −7.7, respectively. NGC 628 dwA is a classical dwarf while NGC 628 dwB is a low-luminosity galaxy that appears to have been quenched after reionization. Completeness corrections indicate that the presence of these two satellites is consistent with CDM predictions. The satellite colours indicate that the galaxies are neither actively star forming nor do they have the purely ancient stellar populations characteristic of ultrafaint dwarfs. Instead, and consistent with our previous work on the NGC 4214 system, they show signs of recent quenching, further indicating that environmental quenching can play a role in modifying satellite populations even for hosts smaller than the Milky Way. 
    more » « less
  4. ABSTRACT Giant molecular clouds (GMCs) are well studied in the local Universe, however, exactly how their properties vary during galaxy evolution is poorly understood due to challenging resolution requirements, both observational and computational. We present the first time-dependent analysis of GMCs in a Milky Way-like galaxy and an Large Magellanic Cloud (LMC)-like dwarf galaxy of the FIRE-2 (Feedback In Realistic Environments) simulation suite, which have sufficient resolution to predict the bulk properties of GMCs in cosmological galaxy formation self-consistently. We show explicitly that the majority of star formation outside the galactic centre occurs within self-gravitating gas structures that have properties consistent with observed bound GMCs. We find that the typical cloud bulk properties such as mass and surface density do not vary more than a factor of 2 in any systematic way after the first Gyr of cosmic evolution within a given galaxy from its progenitor. While the median properties are constant, the tails of the distributions can briefly undergo drastic changes, which can produce very massive and dense self-gravitating gas clouds. Once the galaxy forms, we identify only two systematic trends in bulk properties over cosmic time: a steady increase in metallicity produced by previous stellar populations and a weak decrease in bulk cloud temperatures. With the exception of metallicity, we find no significant differences in cloud properties between the Milky Way-like and dwarf galaxies. These results have important implications for cosmological star and star cluster formation and put especially strong constraints on theories relating the stellar initial mass function to cloud properties. 
    more » « less
  5. Abstract We are entering an era in which we will be able to detect and characterize hundreds of dwarf galaxies within the Local Volume. It is already known that a strong dichotomy exists in the gas content and star formation properties of field dwarf galaxies versus satellite dwarfs of larger galaxies. In this work, we study the more subtle differences that may be detectable in galaxies as a function of distance from a massive galaxy, such as the Milky Way. We compare smoothed particle hydrodynamic simulations of dwarf galaxies formed in a Local Volume-like environment (several megaparsecs away from a massive galaxy) to those formed nearer to Milky Way–mass halos. We find that the impact of environment on dwarf galaxies extends even beyond the immediate region surrounding Milky Way–mass halos. Even before being accreted as satellites, dwarf galaxies near a Milky Way–mass halo tend to have higher stellar masses for their halo mass than more isolated galaxies. Dwarf galaxies in high-density environments also tend to grow faster and form their stars earlier. We show observational predictions that demonstrate how these trends manifest in lower quenching rates, higher Hifractions, and bluer colors for more isolated dwarf galaxies. 
    more » « less