skip to main content

Title: Dynamically produced moving groups in interacting simulations
ABSTRACT We show that smoothed particle hydrodynamics (SPH) simulations of dwarf galaxies interacting with a Milky Way-like disc produce moving groups in the simulated stellar disc. We analyse three different simulations: one that includes dwarf galaxies that mimic the Large Magellanic Cloud, Small Magellanic Cloud, and the Sagittarius dwarf spheroidal; another with a dwarf galaxy that orbits nearly in the plane of the Milky Way disc; and a null case that does not include a dwarf galaxy interaction. We present a new algorithm to find large moving groups in the VR, Vϕ plane in an automated fashion that allows us to compare velocity substructure in different simulations, at different locations, and at different times. We find that there are significantly more moving groups formed in the interacting simulations than in the isolated simulation. A number of dwarf galaxies are known to orbit the Milky Way, with at least one known to have had a close pericentre approach. Our analysis of simulations here indicates that dwarf galaxies like those orbiting our Galaxy produce large moving groups in the disc. Our analysis also suggests that some of the moving groups in the Milky Way may have formed due to dynamical interactions with perturbing dwarf satellites. The groups identified in the simulations by our algorithm have similar properties to those found in the Milky Way, including similar fractions of the total stellar population included in the groups, as well as similar average velocities and velocity dispersions.  more » « less
Award ID(s):
2009574 1908653
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
2561 to 2574
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT We examine the prevalence, longevity, and causes of planes of satellite dwarf galaxies, as observed in the Local Group. We use 14 Milky Way/Andromeda-(MW/M31) mass host galaxies from the Feedback In Realistic Environments-2 simulations. We select the 14 most massive satellites by stellar mass within $d_\mathrm{host}\le 300\mathrm{\, kpc}$ of each host and correct for incompleteness from the foreground galactic disc when comparing to the MW. We find that MW-like planes as spatially thin and/or kinematically coherent as observed are uncommon, but they do exist in our simulations. Spatially thin planes occur in 1–2 per cent of snapshots during z = 0−0.2, and kinematically coherent planes occur in 5 per cent of snapshots. These planes are generally transient, surviving for <500 Myr. However, if we select hosts with a Large Magellanic Cloud-like satellite near first pericentre, the fraction of snapshots with MW-like planes increases dramatically to 7–16 per cent, with lifetimes of  0.7–1 Gyr, likely because of group accretion of satellites. We find that M31’s satellite distribution is much more common: M31’s satellites lie within ∼1σ of the simulation median for every plane metric we consider. We find no significant difference in average satellite planarity for isolated hosts versus hosts in LG-like pairs. Baryonic and dark matter-only simulations exhibit similar levels of planarity, even though baryonic subhaloes are less centrally concentrated within their host haloes. We conclude that planes of satellites are not a strong challenge to ΛCDM cosmology. 
    more » « less
  2. null (Ed.)
    ABSTRACT We investigate thin and thick stellar disc formation in Milky Way-mass galaxies using 12 FIRE-2 cosmological zoom-in simulations. All simulated galaxies experience an early period of bursty star formation that transitions to a late-time steady phase of near-constant star formation. Stars formed during the late-time steady phase have more circular orbits and thin-disc-like morphology at z = 0, while stars born during the bursty phase have more radial orbits and thick-disc structure. The median age of thick-disc stars at z = 0 correlates strongly with this transition time. We also find that galaxies with an earlier transition from bursty to steady star formation have a higher thin-disc fractions at z = 0. Three of our systems have minor mergers with Large Magellanic Cloud-size satellites during the thin-disc phase. These mergers trigger short starbursts but do not destroy the thin disc nor alter broad trends between the star formation transition time and thin/thick-disc properties. If our simulations are representative of the Universe, then stellar archaeological studies of the Milky Way (or M31) provide a window into past star formation modes in the Galaxy. Current age estimates of the Galactic thick disc would suggest that the Milky Way transitioned from bursty to steady phase ∼6.5 Gyr ago; prior to that time the Milky Way likely lacked a recognizable thin disc. 
    more » « less
  3. null (Ed.)
    ABSTRACT We present the hestia simulation suite: High-resolutions Environmental Simulations of The Immediate Area, a set of cosmological simulations of the Local Group. Initial conditions constrained by the observed peculiar velocity of nearby galaxies are employed to accurately simulate the local cosmography. Halo pairs that resemble the Local Group are found in low resolutions constrained, dark matter only simulations, and selected for higher resolution magneto hydrodynamic simulation using the arepo code. Baryonic physics follows the auriga model of galaxy formation. The simulations contain a high-resolution region of 3–5 Mpc in radius from the Local Group mid-point embedded in the correct cosmographic landscape. Within this region, a simulated Local Group consisting of a Milky Way and Andromeda like galaxy forms, whose description is in excellent agreement with observations. The simulated Local Group galaxies resemble the Milky Way and Andromeda in terms of their halo mass, mass ratio, stellar disc mass, morphology separation, relative velocity, rotation curves, bulge-disc morphology, satellite galaxy stellar mass function, satellite radial distribution, and in some cases, the presence of a Magellanic cloud like object. Because these simulations properly model the Local Group in their cosmographic context, they provide a testing ground for questions where environment is thought to play an important role. 
    more » « less
  4. null (Ed.)
    ABSTRACT In hierarchical structure formation, metal-poor stars in and around the Milky Way (MW) originate primarily from mergers of lower mass galaxies. A common expectation is therefore that metal-poor stars should have isotropic, dispersion-dominated orbits that do not correlate strongly with the MW disc. However, recent observations of stars in the MW show that metal-poor ($\rm {[Fe/H]}\lesssim -2$) stars are preferentially on prograde orbits with respect to the disc. Using the Feedback In Realistic Environments 2 (FIRE-2) suite of cosmological zoom-in simulations of MW/M31-mass galaxies, we investigate the prevalence and origin of prograde metal-poor stars. Almost all (11 of 12) of our simulations have metal-poor stars on preferentially prograde orbits today and throughout most of their history: we thus predict that this is a generic feature of MW/M31-mass galaxies. The typical prograde-to-retrograde ratio is ∼2:1, which depends weakly on stellar metallicity at $\rm {[Fe/H]}\lesssim -1$. These trends predicted by our simulations agree well with MW observations. Prograde metal-poor stars originate largely from a single Large/Small Magellanic Cloud (LMC/SMC)-mass gas-rich merger $7\!-\!12.5\, \rm {Gyr}$ ago, which deposited existing metal-poor stars and significant gas on an orbital vector that sparked the formation of and/or shaped the orientation of a long-lived stellar disc, giving rise to a prograde bias for all low-metallicity stars. We find subdominant contributions from in situ stars formed in the host galaxy before this merger, and in some cases, additional massive mergers. We find few clear correlations between any properties of our MW/M31-mass galaxies at z = 0 and the degree of this prograde bias as a result of diverse merger scenarios. 
    more » « less
  5. ABSTRACT Giant molecular clouds (GMCs) are well studied in the local Universe, however, exactly how their properties vary during galaxy evolution is poorly understood due to challenging resolution requirements, both observational and computational. We present the first time-dependent analysis of GMCs in a Milky Way-like galaxy and an Large Magellanic Cloud (LMC)-like dwarf galaxy of the FIRE-2 (Feedback In Realistic Environments) simulation suite, which have sufficient resolution to predict the bulk properties of GMCs in cosmological galaxy formation self-consistently. We show explicitly that the majority of star formation outside the galactic centre occurs within self-gravitating gas structures that have properties consistent with observed bound GMCs. We find that the typical cloud bulk properties such as mass and surface density do not vary more than a factor of 2 in any systematic way after the first Gyr of cosmic evolution within a given galaxy from its progenitor. While the median properties are constant, the tails of the distributions can briefly undergo drastic changes, which can produce very massive and dense self-gravitating gas clouds. Once the galaxy forms, we identify only two systematic trends in bulk properties over cosmic time: a steady increase in metallicity produced by previous stellar populations and a weak decrease in bulk cloud temperatures. With the exception of metallicity, we find no significant differences in cloud properties between the Milky Way-like and dwarf galaxies. These results have important implications for cosmological star and star cluster formation and put especially strong constraints on theories relating the stellar initial mass function to cloud properties. 
    more » « less