skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2305663

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Lipid nanoparticles (LNPs) are the most clinically advanced nonviral RNA-delivery vehicles, though challenges remain in fully understanding how LNPs interact with biological systems.In vivo, proteins form an associated corona on LNPs that redefines their physicochemical properties and influences delivery outcomes. Despite its importance, the LNP protein corona is challenging to study owing to the technical difficulty of selectively recovering soft nanoparticles from biological samples. Herein, we developed a quantitative, label-free mass spectrometry-based proteomics approach to characterize the protein corona on LNPs. Critically, this protein corona isolation workflow avoids artifacts introduced by the presence of endogenous nanoparticles in human biofluids. We applied continuous density gradient ultracentrifugation for protein-LNP complex isolation, with mass spectrometry for protein identification normalized to protein composition in the biofluid alone. With this approach, we quantify proteins consistently enriched in the LNP corona including vitronectin, C-reactive protein, and alpha-2-macroglobulin. We explore the impact of these corona proteins on cell uptake and mRNA expression in HepG2 human liver cells, and find that, surprisingly, increased levels of cell uptake do not correlate with increased mRNA expression in part likely due to protein corona-induced lysosomal trafficking of LNPs. Our results underscore the need to consider the protein corona in the design of LNP-based therapeutics. Abstract Figure 
    more » « less
    Free, publicly-accessible full text available January 24, 2026
  2. Abstract Detection and remediation of stress in crops is vital to ensure agricultural productivity. Conventional forms of assessing stress in plants are limited by feasibility, delayed phenotypic responses, inadequate specificity, and lack of sensitivity during initial phases of stress. While mass spectrometry is remarkably precise and achieves high-resolution, complex samples, such as plant tissues, require time-consuming and biased depletion strategies to effectively identify low-abundant stress biomarkers. Here, we bypassed these reduction methods via a nano-omics approach, where gold nanoparticles were used to enrich time- and temperature-dependent stress-related proteins through biomolecular corona formation that were subsequently analyzed by ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). This nano-omic approach was more effective than a conventional proteomic analysis using UHPLC- MS/MS for resolving biotic-stress induced responses at early stages of pathogen infection inArabidopsis thaliana, well before the development of visible phenotypic symptoms, as well as in distal tissues of pathogen infected plants at early timepoints. The enhanced sensitivity of this nano-omic approach enables the identification of stress-related proteins at early critical timepoints, providing a more nuanced understanding of plant-pathogen interactions that can be leveraged for the development of early intervention strategies for sustainable agriculture. 
    more » « less
    Free, publicly-accessible full text available December 13, 2025