skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep profiling of plant stress biomarkers following bacterial pathogen infection with protein corona based nano-omics
Abstract Detection and remediation of stress in crops is vital to ensure agricultural productivity. Conventional forms of assessing stress in plants are limited by feasibility, delayed phenotypic responses, inadequate specificity, and lack of sensitivity during initial phases of stress. While mass spectrometry is remarkably precise and achieves high-resolution, complex samples, such as plant tissues, require time-consuming and biased depletion strategies to effectively identify low-abundant stress biomarkers. Here, we bypassed these reduction methods via a nano-omics approach, where gold nanoparticles were used to enrich time- and temperature-dependent stress-related proteins through biomolecular corona formation that were subsequently analyzed by ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). This nano-omic approach was more effective than a conventional proteomic analysis using UHPLC- MS/MS for resolving biotic-stress induced responses at early stages of pathogen infection inArabidopsis thaliana, well before the development of visible phenotypic symptoms, as well as in distal tissues of pathogen infected plants at early timepoints. The enhanced sensitivity of this nano-omic approach enables the identification of stress-related proteins at early critical timepoints, providing a more nuanced understanding of plant-pathogen interactions that can be leveraged for the development of early intervention strategies for sustainable agriculture.  more » « less
Award ID(s):
2305663
PAR ID:
10580426
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This review presents progress made in the ambient analysis of proteins, in particular by desorption electrospray ionization‐mass spectrometry (DESI‐MS). Related ambient ionization techniques are discussed in comparison to DESI‐MS only to illustrate the larger context of protein analysis by ambient ionization mass spectrometry. The review describes early and current approaches for the analysis of undigested proteins, native proteins, tryptic digests, and indirect protein determination through reporter molecules. Applications to mass spectrometry imaging for protein spatial distributions, the identification of posttranslational modifications, determination of binding stoichiometries, and enzymatic transformations are discussed. The analytical capabilities of other ambient ionization techniques such as LESA and nano‐DESI currently exceed those of DESI‐MS for in situ surface sampling of intact proteins from tissues. This review shows, however, that despite its many limitations, DESI‐MS is making valuable contributions to protein analysis. The challenges in sensitivity, spatial resolution, and mass range are surmountable obstacles and further development and improvements to DESI‐MS is justified. 
    more » « less
  2. Plants are continuously exposed to beneficial and pathogenic microbes, but how plants recognize and respond to friends ver- sus foes remains poorly understood. Here, we compared the molecular response of Arabidopsis thaliana independently chal- lenged with a Fusarium oxysporum endophyte Fo47 versus a pathogen Fo5176. These two F. oxysporum strains share a core genome of about 46 Mb, in addition to 1,229 and 5,415 unique accessory genes. Metatranscriptomic data reveal a shared pattern of expression for most plant genes (about 80%) in responding to both fungal inoculums at all timepoints from 12 to 96 h postinoculation (HPI). However, the distinct responding genes depict transcriptional plasticity, as the path- ogenic interaction activates plant stress responses and sup- presses functions related to plant growth and development, while the endophytic interaction attenuates host immunity but activates plant nitrogen assimilation. The differences in reprogramming of the plant transcriptome are most obvious in 12 HPI, the earliest timepoint sampled, and are linked to accessory genes in both fungal genomes. Collectively, our results indicate that the A. thaliana and F. oxysporum interac- tion displays both transcriptome conservation and plasticity in the early stages of infection, providing insights into the fine- tuning of gene regulation underlying plant differential responses to fungal endophytes and pathogens. 
    more » « less
  3. Plants are continuously exposed to beneficial and pathogenic microbes, but how plants recognize and respond to friends versus foes remains poorly understood. Here, we compared the molecular response of Arabidopsis thaliana independently challenged with a Fusarium oxysporum endophyte Fo47 versus a pathogen Fo5176. These two F. oxysporum strains share a core genome of about 46 Mb, in addition to 1,229 and 5,415 unique accessory genes. Metatranscriptomic data reveal a shared pattern of expression for most plant genes (about 80%) in responding to both fungal inoculums at all timepoints from 12 to 96 h postinoculation (HPI). However, the distinct responding genes depict transcriptional plasticity, as the pathogenic interaction activates plant stress responses and suppresses functions related to plant growth and development, while the endophytic interaction attenuates host immunity but activates plant nitrogen assimilation. The differences in reprogramming of the plant transcriptome are most obvious in 12 HPI, the earliest timepoint sampled, and are linked to accessory genes in both fungal genomes. Collectively, our results indicate that the A. thaliana and F. oxysporum interaction displays both transcriptome conservation and plasticity in the early stages of infection, providing insights into the fine-tuning of gene regulation underlying plant differential responses to fungal endophytes and pathogens. [Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license . 
    more » « less
  4. A surge in the accumulation of oxidants generates shifts in the cellular redox potential during early stages of plant infection with pathogens and activation of effector-triggered immunity (ETI). The redoxome, defined as the proteome-wide oxidative modifications of proteins caused by oxidants, has a well-known impact on stress responses in metazoans. However, the identity of proteins and the residues sensitive to oxidation during the plant immune response remain largely unknown. Previous studies of the thimet oligopeptidases TOP1 and TOP2 placed them in the salicylic acid dependent branch of ETI, with a current model wherein TOPs sustain interconnected organellar and cytosolic pathways that modulate the oxidative burst and development of cell death. Herein, we characterized the ETI redoxomes in Arabidopsis (Arabidopsis thaliana) wild-type Col-0 and top1top2 mutant plants using a differential alkylation-based enrichment technique coupled with label-free mass spectrometry-based quantification. We identified cysteines sensitive to oxidation in a wide range of protein families at multiple time points after pathogen infection. Differences were detected between Col-0 and top1top2 redoxomes regarding the identity and number of oxidized cysteines, and the amplitude of time-dependent fluctuations in protein oxidation. Our results support a determining role for TOPs in maintaining the proper level and dynamics of proteome oxidation during ETI. This study significantly expands the repertoire of oxidation-sensitive plant proteins and can guide future mechanistic studies. 
    more » « less
  5. Abstract Unraveling the complexity of biological systems relies on the development of new approaches for spatially resolved proteoform‐specific analysis of the proteome. Herein, we employ nanospray desorption electrospray ionization mass spectrometry imaging (nano‐DESI MSI) for the proteoform‐selective imaging of biological tissues. Nano‐DESI generates multiply charged protein ions, which is advantageous for their structural characterization using tandem mass spectrometry (MS/MS) directly on the tissue. Proof‐of‐concept experiments demonstrate that nano‐DESI MSI combined with on‐tissue top‐down proteomics is ideally suited for the proteoform‐selective imaging of tissue sections. Using rat brain tissue as a model system, we provide the first evidence of differential proteoform expression in different regions of the brain. 
    more » « less