Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT A major open question in astrophysics is the mechanisms by which massive black holes (BHs) form in the early Universe, which pose constraints on seeding models. We study BH formation and evolution in a flexible model combining the cosmological IllustrisTNG (TNG) simulations with semi-analytic modelling in post-processing. We identify our TNG model hosts based on various criteria including a minimum gas mass of $10^7$$–$$10^9$${\rm M}_{\odot }$$, total host mass of $$10^{8.5}$$–$$10^{10.5}$${\rm M}_{\odot }$$, and a maximum gas metallicity of 0.01–0.1 $$\mathrm{Z}_{\odot }$$. Each potential host is assigned a BH seed with a probability of 0.01–1. The populations follow the TNG galaxy merger tree. This approach improves upon the predictive power of the simple TNG BH seeding prescription, narrowing down plausible seeding parameter spaces, and it is readily adaptable to other cosmological simulations. Several model realizations predict $$z\lesssim 4$$ BH mass densities that are consistent with empirical data as well as the TNG BHs. However, high-redshift BH number densities can differ by factors of $$\sim$$ 10 to $$\gtrsim$$ 100 between seeding parameters. In most model realizations, $$\lesssim 10^5$${\rm M}_{\odot }$$ BHs substantially outnumber heavier BHs at high redshifts. Mergers between such BHs are prime targets for gravitational-wave detection with Laser Interferometer Space Antenna. The $z=0$ BH mass densities in most realizations of the model agree well with observations, but our strictest seeding criteria fail at high redshift. Our findings strongly motivate the need for better empirical constraints on high-z BHs, and they underscore the significance of recent active galactic nucleus discoveries with JWST.more » « less
-
ABSTRACT The origin of the ‘seeds’ of supermassive black holes (BHs) continues to be a puzzle, as it is currently unclear if the imprints of early seed formation could survive to today. We examine the signatures of seeding in the local Universe using five $$[18~\mathrm{Mpc}]^3$$BRAHMA simulation boxes run to $z=0$. They initialize $$1.5\times 10^5~\rm {M}_{\odot }$$ BHs using different seeding models. The first four boxes initialize BHs as heavy seeds using criteria that depend on dense and metal-poor gas, Lyman–Werner radiation, gas spin, and environmental richness. The fifth box initializes BHs as descendants of lower mass seeds ($$\sim 10^3~\rm {M}_{\odot }$$) using a new stochastic seed model built in our previous work. In our simulations, we find that the abundances and properties of $$\sim 10^5-10^6~\rm {M}_{\odot }$$ local BHs hosted in $$M_*\lesssim 10^{9}~\rm {M}_{\odot }$$ dwarf galaxies, are sensitive to the assumed seeding criteria. This is for two reasons: (1) there is a substantial population of local $$\sim 10^5~\rm {M}_{\odot }$$ BHs that are ungrown relics of early seeds from $$z\sim 5-10$$; (2) BH growth up to $$\sim 10^6~\rm {M}_{\odot }$$ is dominated by mergers in our simulations all the way down to $$z\sim 0$$. As the contribution from gas accretion increases, the signatures of seeding start to weaken in more massive $$\gtrsim 10^6~\rm {M}_{\odot }$$ BHs, and they are erased for $$\gtrsim 10^7~\rm {M}_{\odot }$$ BHs. The different seed models explored here predict abundances of local $$\sim 10^6~\rm {M}_{\odot }$$ BHs ranging from $$\sim 0.01-0.05~\mathrm{Mpc}^{-3}$$ with occupation fractions of $$\sim 20-100~{{\ \rm per\ cent}}$$ for $$M_*\sim 10^{9}~\rm {M}_{\odot }$$ galaxies. These results highlight the potential for placing constraints on seeding models using local $$\sim 10^5-10^6~\rm {M}_{\odot }$$ BHs hosted in dwarf galaxies. Since merger dynamics and accretion physics impact the persistence of seeding signatures, and both high and low mass seed models can produce similar local BH populations, disentangling their roles will require combining high and low redshift constraints.more » « less
-
ABSTRACT JWST has revealed a large population of accreting black holes (BHs) in the early Universe. Recent work has shown that even after accounting for possible systematic biases, the high-z$$M_*{\!-\!}M_{\rm \rm bh}$$ relation can be above the local scaling relation by $$\gt 3\sigma$$. To understand the implications of these overmassive high-z BHs, we study the BH growth at $$z\sim 4{\!-\!}7$$ using the $$[18~\mathrm{Mpc}]^3$$BRAHMA cosmological simulations with systematic variations of heavy seed models that emulate direct collapse black hole (DCBH) formation. In our least restrictive seed model, we place $$\sim 10^5~{\rm M}_{\odot }$$ seeds in haloes with sufficient dense and metal-poor gas. To model conditions for direct collapse, we impose additional criteria based on a minimum Lyman Werner flux (LW flux $$=10~J_{21}$$), maximum gas spin, and an environmental richness criterion. The high-z BH growth in our simulations is merger dominated, with a relatively small contribution from gas accretion. The simulation that includes all the above seeding criteria fails to reproduce an overmassive high-z$$M_*{\!-\!}M_{\rm bh}$$ relation consistent with observations (by factor of $$\sim 10$$ at $$z\sim 4$$). However, more optimistic models that exclude the spin and environment based criteria are able to reproduce the observed relations if we assume $$\lesssim 750~\mathrm{Myr}$$ delay times between host galaxy mergers and subsequent BH mergers. Overall, our results suggest that current JWST observations may be explained with heavy seeding channels if their formation is more efficient than currently assumed DCBH conditions. Alternatively, we may need higher initial seed masses, additional contributions from lighter seeds to BH mergers, and / or more efficient modes for BH accretion.more » « less
-
We present JWST/NIRSpec integral field data of the quasar PJ308-21 atz = 6.2342. As shown by previous ALMA and HST imaging, the quasar has two companion sources, interacting with the quasar host galaxy. The high-resolution G395H/290LP NIRSpec spectrum covers the 2.87 − 5.27 μm wavelength range and shows the rest-frame optical emission of the quasar with exquisite quality (signal-to-noise ratio ∼100 − 400 per spectral element). Based on the Hβline from the broad line region, we obtain an estimate of the black hole massMBH, Hβ ∼ 2.7 × 109 M⊙. This value is within a factor ≲1.5 of the Hα-based black hole mass from the same spectrum (MBH, Hα ∼ 1.93 × 109 M⊙) and is consistent with a previous estimate relying on the Mg IIλ2799 line (MBH, MgII ∼ 2.65 × 109 M⊙). All theseMBHestimates are within the ∼0.5 dex intrinsic scatter of the adopted mass calibrations. The high Eddington ratio of PJ308-21λEdd, Hβ ∼ 0.67 (λEdd, Hα ∼ 0.96) is in line with the overall quasar population atz ≳ 6. The relative strengths of the [O III], Fe II, and Hβlines are consistent with the empirical “Eigenvector 1” correlations as observed for low redshift quasars. We find evidence for blueshifted [O III]λ5007 emission with a velocity offset Δv[O III] = −1922 ± 39 km s−1from the systemic velocity and a full width at half maximum (FWHM)FWHM([O III]) = 2776−74+75km s−1. This may be the signature of outflowing gas from the nuclear region, despite the true values of Δv[O III]andFWHM([O III]) likely being more uncertain due to the blending with Hβand Fe IIlines. Our study demonstrates the unique capabilities of NIRSpec in capturing quasar spectra at cosmic dawn and studying their properties in unprecedented detail.more » « less
An official website of the United States government
