Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The merger of a black hole (BH) and a neutron star (NS) in most cases is expected to leave no material around the remnant BH; therefore, such events are often considered as sources of gravitational waves without electromagnetic counterparts. However, a bright counterpart can emerge if the NS is strongly magnetized, as its external magnetosphere can experience radiative shocks and magnetic reconnection during/after the merger. We use magnetohydrodynamic simulations in the dynamical spacetime of a merging BH–NS binary to investigate its magnetospheric dynamics. We find that compressive waves excited in the magnetosphere develop into monster shocks as they propagate outward. After swallowing the NS, the BH acquires a magnetosphere that quickly evolves into a split-monopole configuration and then undergoes an exponential decay (balding), enabled by magnetic reconnection and also assisted by the ringdown of the remnant BH. This spinning BH drags the split monopole into rotation, forming a transient pulsar-like state. It emits a striped wind if the swallowed magnetic-dipole moment is inclined to the spin axis. We predict two types of transients from this scenario: (1) a fast radio burst emitted by the shocks as they expand to large radii; and (2) an X-ray/γ-ray burst emitted by thee±outflow heated by magnetic dissipation.more » « lessFree, publicly-accessible full text available March 31, 2026
-
Abstract Supermassive binary black holes in galactic centers are potential multimessenger sources in gravitational waves and electromagnetic radiation. To find such objects, isolating unique electromagnetic signatures of their accretion flow is key. With the aid of three-dimensional general-relativistic magnetohydrodynamic simulations that utilize an approximate, semianalytic, superimposed spacetime metric, we identify two such signatures for merging binaries. Both involve magnetic reconnection and are analogous to plasma processes observed in the solar corona. The first, like colliding flux tubes that can cause solar flares, involves colliding jets that form an extended reconnection layer, dissipating magnetic energy and causing the two jets to merge. The second, akin to coronal mass ejection events, involves the accretion of magnetic field lines onto both black holes; these magnetic fields then twist, inflate, and form a trailing current sheet, ultimately reconnecting and driving a hot outflow. We provide estimates for the associated electromagnetic emission for both processes, showing that they likely accelerate electrons to high energies and are promising candidates for continuous, stochastic, and/or quasi-periodic higher-energy electromagnetic emission. We also show that the accretion flows around each black hole can display features associated with the magnetically arrested state. However, simulations with black hole spins misaligned with the orbital plane and simulations with larger Bondi radii saturate at lower values of horizon-penetrating magnetic flux than standard magnetically arrested disks, leading to weaker, intermittent jets owing to feedback from the weak jets or equatorial flux tubes ejected by reconnecting field lines near the horizon.more » « less
-
Abstract We perform the first magnetohydrodynamic simulation tracking the magnetosphere of a collapsing magnetar. The collapse is expected for massive rotating magnetars formed in merger events and may occur many hours after the merger. Our simulation suggests a novel mechanism for a gamma-ray burst (GRB), which is uncollimated and forms a delayed high-energy counterpart of the merger gravitational waves. The simulation shows that the collapse launches an outgoing magnetospheric shock, and a hot magnetized outflow forms behind the shock. The outflow is baryon free and uncollimated, and its power peaks on a millisecond timescale. Then, the outflow becomes modulated by the ring-down of the nascent black hole, imprinting its kilohertz quasi-normal modes on the GRB tail.more » « less
-
Abstract Neutron stars have solid crusts threaded by strong magnetic fields. Perturbations in the crust can excite nonradial oscillations, which can in turn launch Alfvén waves into the magnetosphere. In the case of a compact binary close to merger involving at least one neutron star, this can happen through tidal interactions causing resonant excitations that shatter the neutron star crust. We present the first numerical study that elucidates the dynamics of Alfvén waves launched in a compact binary magnetosphere. We seed a magnetic field perturbation on the neutron star crust, which we then evolve in fully general-relativistic force-free electrodynamics using a GPU-based implementation. We show that Alfvén waves steepen nonlinearly before reaching the orbital light cylinder, form flares, and dissipate energy in a transient current sheet. Our results predict radio and X-ray precursor emission from this process.more » « less
-
Abstract A variety of high-energy astrophysical phenomena are powered by the release—via magnetic reconnection—of the energy stored in oppositely directed fields. Single-fluid resistive magnetohydrodynamic (MHD) simulations with uniform resistivity yield dissipation rates that are much lower (by nearly 1 order of magnitude) than equivalent kinetic calculations. Reconnection-driven phenomena could be accordingly modeled in resistive MHD employing a nonuniform, “effective” resistivity informed by kinetic calculations. In this work, we analyze a suite of fully kinetic particle-in-cell (PIC) simulations of relativistic pair-plasma reconnection—where the magnetic energy is greater than the rest mass energy—for different strengths of the guide field orthogonal to the alternating component. We extract an empirical prescription for the effective resistivity, , whereB0is the reconnecting magnetic field strength,Jis the current density,ntis the lab-frame total number density,eis the elementary charge, andcis the speed of light. The guide field dependence is encoded inαandp, which we fit to PIC data. This resistivity formulation—which relies only on single-fluid MHD quantities—successfully reproduces the spatial structure and strength of nonideal electric fields and thus provides a promising strategy for enhancing the reconnection rate in resistive MHD simulations.more » « less
-
Abstract The presence of magnetic fields in the late inspiral of black hole–neutron star binaries could lead to potentially detectable electromagnetic precursor transients. Using general-relativistic force-free electrodynamics simulations, we investigate premerger interactions of the common magnetosphere of black hole–neutron star systems. We demonstrate that these systems can feature copious electromagnetic flaring activity, which we find depends on the magnetic field orientation but not on black hole spin. Due to interactions with the surrounding magnetosphere, these flares could lead to fast-radio-burst-like transients and X-ray emission, with as an upper bound on the luminosity, whereB*is the magnetic field strength on the surface of the neutron star.more » « less
An official website of the United States government
