skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Monster Shocks, Gamma-Ray Bursts, and Black Hole Quasi-normal Modes from Neutron-star Collapse
Abstract We perform the first magnetohydrodynamic simulation tracking the magnetosphere of a collapsing magnetar. The collapse is expected for massive rotating magnetars formed in merger events and may occur many hours after the merger. Our simulation suggests a novel mechanism for a gamma-ray burst (GRB), which is uncollimated and forms a delayed high-energy counterpart of the merger gravitational waves. The simulation shows that the collapse launches an outgoing magnetospheric shock, and a hot magnetized outflow forms behind the shock. The outflow is baryon free and uncollimated, and its power peaks on a millisecond timescale. Then, the outflow becomes modulated by the ring-down of the nascent black hole, imprinting its kilohertz quasi-normal modes on the GRB tail.  more » « less
Award ID(s):
2309210 2307394 2009453
PAR ID:
10547581
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
974
Issue:
1
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L12
Size(s):
Article No. L12
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Evidence is mounting that recent multiwavelength detections of fast blue optical transients (FBOTs) in star-forming galaxies comprise a new class of transients, whose origin is yet to be understood. We show that hydrogen-rich collapsing stars that launch relativistic jets near the central engine can naturally explain the entire set of FBOT observables. The jet–star interaction forms a mildly relativistic shocked jet (inner cocoon) component, which powers cooling emission that dominates the high velocity optical signal during the first few weeks, with a typical energy of ∼1050–1051 erg. During this time, the cocoon radial energy distribution implies that the optical light curve exhibits a fast decay of $$L \,\, \buildrel\propto \over \sim \,\,t^{-2.4}$$. After a few weeks, when the velocity of the emitting shell is ∼0.01 c, the cocoon becomes transparent, and the cooling envelope governs the emission. The interaction between the cocoon and the dense circumstellar winds generates synchrotron self-absorbed emission in the radio bands, featuring a steady rise on a month time-scale. After a few months the relativistic outflow decelerates, enters the observer’s line of sight, and powers the peak of the radio light curve, which rapidly decays thereafter. The jet (and the inner cocoon) becomes optically thin to X-rays ∼day after the collapse, allowing X-ray photons to diffuse from the central engine that launched the jet to the observer. Cocoon cooling emission is expected at higher volumetric rates than gamma-ray bursts (GRBs) by a factor of a few, similar to FBOTs. We rule out uncollimated outflows, however, both GRB jets and failed collimated jets are compatible with all observables. 
    more » « less
  2. Abstract Gamma-ray bursts (GRBs) are traditionally classified as either short GRBs with durations ≲2 s that are powered by compact object mergers or long GRBs with durations ≳2 s that are powered by the deaths of massive stars. Recent results, however, have challenged this dichotomy and suggest that there exists a population of merger-driven long bursts. One such example, GRB 191019A, has at90≈ 64 s, but many of its other properties—including its host galaxy, afterglow luminosity and lack of associated supernova—are more consistent with a short GRB. Here we propose an alternative interpretation: that GRB 191019A (which is located in the nucleus of its host) is an atypical jetted tidal disruption event (TDE). In particular, we suggest the short timescale and rapid decline, not expected for standard TDEs, are the result of an “ultradeep” encounter, in which the star came well within the tidal radius of the black hole and promptly self-intersected, circularized, accreted, and launched a relativistic outflow. This model reproduces the timescale and luminosity through a prompt super-Eddington accretion phase and accounts for the lack of late optical emission. This would make GRB 191019A only the fifth jetted TDE and the first discovered ultradeep TDE. The ultradeep TDE model can be distinguished from merger-driven long GRBs via the soft X-ray flash that results from prompt self-intersection of the debris stream; the detection of this flash will be possible with wide-field and soft-X-ray satellites such as Einstein Probe or SVOM. 
    more » « less
  3. null (Ed.)
    ABSTRACT The morphology of bipolar planetary nebulae (PNe) can be attributed to interactions between a fast wind from the central engine and the dense toroidal-shaped ejecta left over from common envelope (CE) evolution. Here we use the 3D hydrodynamic adaptive mesh refinement (AMR) code AstroBEAR to study the possibility that bipolar PN outflows can emerge collimated even from an uncollimated spherical wind in the aftermath of a CE event. The output of a single CE simulation via the smoothed particle hydrodynamics (SPH) code phantom serves as the initial conditions. Four cases of winds, all with high enough momenta to account for observed high momenta pre-PN outflows, are injected spherically from the region of the CE binary remnant into the ejecta. We compare cases with two different momenta and cases with no radiative cooling versus application of optically thin emission via a cooling curve to the outflow. Our simulations show that in all cases highly collimated bipolar outflows result from deflection of the spherical wind via the interaction with the CE ejecta. Significant asymmetries between the top and bottom lobes are seen in all cases. The asymmetry is strongest for the lower momentum case with radiative cooling. While real post-CE winds may be aspherical, our models show that collimation via ‘inertial confinement’ will be strong enough to create jet-like outflows even beginning with maximally uncollimated drivers. Our simulations reveal detailed shock structures in the shock-focused inertial confinement (SFIC) model and develop a lens-shaped inner shock that is a new feature of SFIC-driven bipolar lobes. 
    more » « less
  4. ABSTRACT During the final stages of a compact object merger, if at least one of the binary components is a magnetized neutron star (NS), then its orbital motion substantially expands the NS’s open magnetic flux – and hence increases its wind luminosity – relative to that of an isolated pulsar. As the binary orbit shrinks due to gravitational radiation, the power and speed of this binary-induced inspiral wind may (depending on pair loading) secularly increase, leading to self-interaction and internal shocks in the outflow beyond the binary orbit. The magnetized forward shock can generate coherent radio emission via the synchrotron maser process, resulting in an observable radio precursor to binary NS merger. We perform 1D relativistic hydrodynamical simulations of shock interaction in the accelerating binary NS wind, assuming that the inspiral wind efficiently converts its Poynting flux into bulk kinetic energy prior to the shock radius. This is combined with the shock maser spectrum from particle-in-cell simulations, to generate synthetic radio light curves. The precursor burst with a fluence of ∼1 Jy·ms at ∼GHz frequencies lasts ∼1–500 ms following the merger for a source at ∼3 Gpc (Bd/1012 G)8/9, where Bd is the dipole field strength of the more strongly magnetized star. Given an outflow geometry concentrated along the binary equatorial plane, the signal may be preferentially observable for high-inclination systems, that is, those least likely to produce a detectable gamma-ray burst. 
    more » « less
  5. Abstract Gamma-ray bursts (GRBs) have historically been divided into two classes. Short-duration GRBs are associated with binary neutron star mergers (NSMs), while long-duration bursts are connected to a subset of core-collapse supernovae (SNe). GRB 211211A recently made headlines as the first long-duration burst purportedly generated by an NSM. The evidence for an NSM origin was excess optical and near-infrared emission consistent with the kilonova observed after the gravitational-wave-detected NSM GW170817. Kilonovae derive their unique electromagnetic signatures from the properties of the heavy elements synthesized by rapid neutron capture (ther-process) following the merger. Recent simulations suggest that the “collapsar” SNe that trigger long GRBs may also producer-process elements. While observations of GRB 211211A and its afterglow rule out an SN typical of those that follow long GRBs, an unusual collapsar could explain both the duration of GRB 211211A and ther-process-powered excess in its afterglow. We use semianalytic radiation transport modeling to evaluate low-mass collapsars as the progenitors of GRB 211211A–like events. We compare a suite of collapsar models to the afterglow-subtracted emission that followed GRB 211211A, and find the best agreement for models with high kinetic energies and an unexpected pattern of56Ni enrichment. We discuss how core-collapse explosions could produce such ejecta, and how distinct our predictions are from those generated by more straightforward kilonova models. We also show that radio observations can distinguish between kilonovae and the more massive collapsar ejecta we consider here. 
    more » « less